×

Finite element method (FEM) analyses of the entropy and convective process within an inclined porous T-shaped domain using nano-encapsulated phase change materials (NEPCMs). (English) Zbl 1537.76070

Summary: Numerical treatments based on the finite element method (FEM) are carried out for the entropy generation and convective process within inclined T-shaped enclosures using the nano-encapsulated phase change materials (NEPCMs). The domain is filled by glass balls as a porous medium and the Brinkman-extended non-Darcy model is applied. For the worked mixture, the overall heat capacity of the encapsulated nanoparticles is estimated using the heat capacity of the core and shell and sine profiles are introduced for the latent heat of the change phase. Three different designs are performed for the considered geometry based on the aspect ratio of the boundaries. During the simulations, various values of the fusion temperature \({t_f}\;({0.05 \le{t_f} \le 0.95})\), the inclination angle \(\gamma\) \(({0 \le \gamma \le \pi /2})\) and different designs of the considered domain \(({{D_1},\;{D_2},\;{D_3}})\) are taken into account and the Ryleigh-Darcy number \(R{a_m}\) is varied between \(10^2\) and \(10^4\). The main outcomes disclosed that, for the fixed values of \(R{a_m}\;({R{a_m} = \;100})\) and \(\gamma\) \((\gamma \; = \frac{\pi}{3})\), the increase in the fusion temperature \({t_f}\) causes a shifting of the melting-solidification zones from the top boundary to the bottom of the horizontal channel.
© 2022 Wiley-VCH GmbH.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76T99 Multiphase and multicomponent flows
76S05 Flows in porous media; filtration; seepage
80A19 Diffusive and convective heat and mass transfer, heat flow
80A22 Stefan problems, phase changes, etc.
Full Text: DOI

References:

[1] Su, W., Darkwa, J., Kokogiannakis, G.: Review of solid-liquid phase change materials and their encapsulation technologies. Renew. Sustain. Energy Rev.48, 373-391 (2015). https://doi.org/10.1016/J.RSER.2015.04.044 · doi:10.1016/J.RSER.2015.04.044
[2] Pielichowska, K., Pielichowski, K.: Phase change materials for thermal energy storage. Prog. Mater Sci.65, 67-123 (2014). https://doi.org/10.1016/J.PMATSCI.2014.03.005 · doi:10.1016/J.PMATSCI.2014.03.005
[3] Nematpour Keshteli, A., Sheikholeslami, M.: Nanoparticle enhanced PCM applications for intensification of thermal performance in building: a review. J. Mol. Liq.274, 516-533 (2019). https://doi.org/10.1016/J.MOLLIQ.2018.10.151 · doi:10.1016/J.MOLLIQ.2018.10.151
[4] Huang, X., Alva, G., Jia, Y., Fang, G.: Morphological characterization and applications of phase change materials in thermal energy storage: a review. Renew Sustain Energy Rev.72, 128-145 (2017). https://doi.org/10.1016/J.RSER.2017.01.048 · doi:10.1016/J.RSER.2017.01.048
[5] Moreno, P., Solé, C., Castell, A., Cabeza, L.F.: The use of phase change materials in domestic heat pump and air‐conditioning systems for short term storage: a review. Renew Sustain Energy Rev.39, 1-13 (2014). https://doi.org/10.1016/J.RSER.2014.07.062 · doi:10.1016/J.RSER.2014.07.062
[6] Sheikholeslami, M.: Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin. J. Mol. Liq.259, 424-438 (2018). https://doi.org/10.1016/J.MOLLIQ.2018.03.006 · doi:10.1016/J.MOLLIQ.2018.03.006
[7] Bondareva, N., Sheremet, M.: Natural convection melting of nano‐enhanced phase change material in a cavity with finned copper profile. MATEC Web Conf.240, 01006 (2018). https://doi.org/10.1051/matecconf/201824001006 · doi:10.1051/matecconf/201824001006
[8] Hossain, R., Mahmud, S., Dutta, A., Pop, I.: Energy storage system based on nanoparticle‐enhanced phase change material inside porous medium. Int. J. Therm. Sci.91, 49-58 (2015). https://doi.org/10.1016/J.IJTHERMALSCI.2014.12.023 · doi:10.1016/J.IJTHERMALSCI.2014.12.023
[9] Ghalambaz, M., Doostani, A., Izadpanahi, E., Chamkha, A.J.: Phase‐change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J. Taiwan Inst. Chem. Eng.72, 104-115 (2017). https://doi.org/10.1016/j.jtice.2017.01.010 · doi:10.1016/j.jtice.2017.01.010
[10] Hosseini, S.R., Sheikholeslami, M., Ghasemian, M., Ganji, D.D.: Nanofluid heat transfer analysis in a microchannel heat sink (MCHS) under the effect of magnetic field by means of KKL model. Powder Technol.324, 36-47 (2018). https://doi.org/10.1016/J.POWTEC.2017.10.043 · doi:10.1016/J.POWTEC.2017.10.043
[11] Sheikholeslami, M., Sadoughi, M.K.: Simulation of CuO‐water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf.116, 909-919 (2018). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.09.086 · doi:10.1016/J.IJHEATMASSTRANSFER.2017.09.086
[12] Chamkha, A.J., Doostanidezfuli, A., Izadpanahi, E., Ghalambaz, M.: Phase‐change heat transfer of single/hybrid nanoparticles‐enhanced phase‐change materials over a heated horizontal cylinder confined in a square cavity. Adv. Powder Technol.28, 385-397 (2017). https://doi.org/10.1016/j.apt.2016.10.009 · doi:10.1016/j.apt.2016.10.009
[13] Elbahjaoui, R., El Qarnia, H.: Transient behavior analysis of the melting of nanoparticle‐enhanced phase change material inside a rectangular latent heat storage unit. Appl. Therm. Eng.112, 720-738 (2017). https://doi.org/10.1016/J.APPLTHERMALENG.2016.10.115 · doi:10.1016/J.APPLTHERMALENG.2016.10.115
[14] Al‐Kouz, W., Kiwan, S., Alkhalidi, A., Sari, M., Alshare, A.: Numerical study of heat transfer enhancement for low‐pressure flows in a square cavity with two fins attached to the hot wall using Al_2O ‐air nanofluid. Strojniški vestnik ‐ J. Mech. Eng.64(1), 26-36 (2018)
[15] Hashim, I., Alsabery, A.I., Sheremet, M.A., Chamkha, A.J.: Numerical investigation of natural convection of Al2O3‐water nanofluid in a wavy cavity with conductive inner block using Buongiorno’s two‐phase model. Adv. Powder Technol.30, 399-414 (2018). https://doi.org/10.1016/J.APT.2018.11.017 · doi:10.1016/J.APT.2018.11.017
[16] Alsabery, A.I., Sheremet, M.A., Chamkha, A.J., Hashim, I.: Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid‐driven wavy cavity involving solid circular cylinder. Int. J. Mech. Sci.150, 637-655 (2019). https://doi.org/10.1016/J.IJMECSCI.2018.10.069 · doi:10.1016/J.IJMECSCI.2018.10.069
[17] Sivaraj, C., Sheremet, M.A.: MHD natural convection and entropy generation of ferrofluids in a cavity with a non‐uniformly heated horizontal plate. Int. J. Mech. Sci.149, 326-337 (2018). https://doi.org/10.1016/J.IJMECSCI.2018.10.017 · doi:10.1016/J.IJMECSCI.2018.10.017
[18] Ghalambaz, M., Sheremet, M.A., Mehryan, S.A.M., Kashkooli, F.M., Pop, I.: Local thermal non‐equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag-MgO hybrid nanofluid. J. Therm. Anal. Calorim.135, 1-18 (2018). https://doi.org/10.1007/s10973‐018‐7472‐8 · doi:10.1007/s10973‐018‐7472‐8
[19] Tahmasebi, A., Mahdavi, M., Ghalambaz, M.: Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer. Heat Transf. Part A Appl.73, 254-276 (2018). https://doi.org/10.1080/10407782.2017.1422632 · doi:10.1080/10407782.2017.1422632
[20] Alsabery, A.I., Armaghani, T., Chamkha, A.J., Sadiq, M.A., Hashim, I.: Effects of two‐phase nanofluid model on convection in a double lid‐driven cavity in the presence of a magnetic field. Int. J. Numer. Meth. Heat Fluid Flow29(4), 1272-1299 (2018). https://doi.org/10.1108/HFF‐07‐2018‐0386, HFF‐07‐2018‐0386 · doi:10.1108/HFF‐07‐2018‐0386
[21] Alsabery, A.I., Tayebi, T., Chamkha, A.J., Hashim, I.: Effects of two‐phase nanofluid model on natural convection in a square cavity in the presence of an adiabatic inner block and magnetic field. Int. J. Numer. Meth. Heat Fluid Flow28, 1613-1647 (2018). https://doi.org/10.1108/HFF‐10‐2017‐0425 · doi:10.1108/HFF‐10‐2017‐0425
[22] Afshar, S.R., Mishra, S.R., Dogonchi, A.S., Karimi, N., Chamkha, A.J., Abulkhair, H.: Dissection of entropy production for the free convection of NEPCMs‐filled porous wavy enclosure subject to volumetric heat source/sink. J. Taiwan Inst. Chem. Eng.128, 98-113 (2021)
[23] Zidan, A.M., Nayak, M.K., Karimi, N., Sattar Dogonchi, A., Chamkha, A.J., Ben Hamida, M.B., Galal, A.M.: Thermal management and natural convection flow of nano encapsulated phase change material (NEPCM)‐water suspension in a reverse T‐shaped porous cavity enshrining two hot corrugated baffles: a boost to renewable energy storage. J. Build. Eng.53, 104550 (2022)
[24] Hashemi‐Tilehnoee, M., Dogonchi, A.S., Seyyedi, S.M., Sharifpur, M.: Magneto‐fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano‐encapsulated phase change material suspension with different layout of cooling channels. J. Energy Storage31, 101720 (2020)
[25] Dogonchi, A.S., Mishra, S.R., Karimi, N., Chamkha, A.J., Alhumade, H.: Interaction of fusion temperature on the magnetic free convection of nano‐encapsulated phase change materials within two rectangular fins‐equipped porous enclosure. J. Taiwan Inst. Chem. Eng.124, 327-340 (2021)
[26] Nayak, M.K., Dogonchi, A.S., Elmasry, Y., Karimi, N., Chamkha, A.J., Alhumade, H.: Free convection and second law scrutiny of NEPCM suspension inside a wavy‐baffle‐equipped cylinder under altered Fourier theory. J. Taiwan Inst. Chem. Eng.128, 288-300 (2021)
[27] Ghalambaz, M., Chamkha, A., Wen, D.: Natural convective flow and heat transfer of Nano‐Encapsulated Phase Change Materials (NEPCMs) in a cavity. Int. J. Heat Mass Transfer138, 738-749 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.037 · doi:10.1016/j.ijheatmasstransfer.2019.04.037
[28] Saeed, A.M., Abderrahmane, A., Qasem, N.A.A., Mourad, A., Alhazmi, M., Ahmed, S.E., Guedri, K.: A numerical investigation of a heat transfer augmentation finned pear‐shaped thermal energy storage system with nano‐enhanced phase change materials. J. Energy Storage53, 105172 (2022)
[29] Ahmed, S., Abderrahmane, A., Saeed, A.M., Guedri, K., Mourad, A., Younes, O., Botmart, T., Shah, N.A.: Melting enhancement of PCM in a finned tube latent heat thermal energy storage. Sci. Rep.12(1), 11521 (2022)
[30] Maneengam, A., Ahmed, S.E., Saeed, A.M., Abderrahmane, A., Younis, O., Guedri, K., Alhazmi, M., Weera, W.: Numerical study of heat transfer enhancement within confined shell and tube latent heat thermal storage microsystem using hexagonal PCMs. Micromachines13(7), 1062 (2022)
[31] Ahmed, S.E., Abderrahmane, A., Alotaibi, S., Younis, O., Almasri, R.A., Hussam, W.K.: Enhanced heat transfer for NePCM‐melting‐based thermal energy of finned heat pipe. Nanomaterials (Basel, Switzerland)12(1), 129 (2021)
[32] Ahmed, S.E., Raizah, Z.A.S.: Analysis of the entropy due to radiative flow of nano-encapsulated phase change materials within inclined porous prismatic enclosures: finite element simulation. J. Energy Storage40, 102719 (2021)
[33] Ghalambaz, M., Mehryan, S.A.M., Zahmatkesh, I., Chamkha, A.: Free convection heat transfer analysis of a suspension of nano-encapsulated phase change materials (NEPCMs) in an inclined porous cavity. Int. J. Therm. Sci.157, 106503 (2020)
[34] Lewis, R.W., Nithiarasu, P., Seetharamu, K.N.: Fundamentals of the Finite Element Method for Heat and Fluid Flow, 1st Edition, Wiley (2004)
[35] Ahmed, S.E.: FEM‐CBS algorithm for convective transport of nanofluids in inclined enclosures filled with anisotropic non‐Darcy porous media using LTNEM. Int. J. Numer. Methods Heat Fluid Flow31(1), 570-594 (2020). https://doi.org/10.1108/HFF‐01‐2020‐0042 · doi:10.1108/HFF‐01‐2020‐0042
[36] Ilis, G.G., Mobedi, M., Sunden, B.: Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int. Commun. Heat Mass Transfer35, 696-703 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.