×

Floating active carpets drive transport and aggregation in aquatic ecosystems. (English) Zbl 07926316

Summary: Communities of swimming microorganisms often thrive near liquid-air interfaces. We study how such ‘active carpets’ shape their aquatic environment by driving biogenic transport in the water column beneath them. The hydrodynamic stirring that active carpets generate leads to diffusive upward fluxes of nutrients from deeper water layers, and downward fluxes of oxygen and carbon. Combining analytical theory and simulations, we examine the biogenic transport by studying fundamental metrics, including the single and pair diffusivity, the first passage time for particle pair encounters and the rate of particle aggregation. Our findings reveal that the hydrodynamic fluctuations driven by active carpets have a region of influence that reaches orders of magnitude further in distance than the size of the organisms. These non-equilibrium fluctuations lead to a strongly enhanced diffusion of particles, which is anisotropic and space dependent. Fluctuations also facilitate encounters of particle pairs, which we quantify by analysing their velocity pair correlation functions as a function of distance between the particles. We found that the size of the particles plays a crucial role in their encounter rates, with larger particles situated near the active carpet being more favourable for aggregation. Overall, this research broadens our comprehension of aquatic systems out of equilibrium and how biologically driven fluctuations contribute to the transport of fundamental elements in biogeochemical cycles.

MSC:

76-XX Fluid mechanics

References:

[1] Ahmadzadegan, A., Wang, S., Vlachos, P.P. & Ardekani, A.M.2019Hydrodynamic attraction of bacteria to gas and liquid interfaces. Phys. Rev. E100 (6), 062605.
[2] Alert, R., Casademunt, J. & Joanny, J.-F.Ç.2022Active turbulence. Annu. Rev. Condens. Matter Phys.13, 143-170.
[3] Angelani, L., Maggi, C., Bernardini, M.L., Rizzo, A. & Di Leonardo, R.2011Effective interactions between colloidal particles suspended in a bath of swimming cells. Phys. Rev. Lett.107 (13), 138302.
[4] Arguedas-Leiva, J.-A., Słomka, J., Lalescu, C.C., Stocker, R. & Wilczek, M.2022Elongation enhances encounter rates between phytoplankton in turbulence. Proc. Natl Acad. Sci. USA119 (32), e2203191119.
[5] Bárdfalvy, D., Škultéty, V., Nardini, C., Morozov, A. & Stenhammar, J.2024Collective motion in a sheet of microswimmers. Commun. Phys.7 (1), 93.
[6] Belan, S. & Kardar, M.2019Pair dispersion in dilute suspension of active swimmers. J. Chem. Phys.150 (6), 064907.
[7] Berke, A.P, Turner, L., Berg, H.C. & Lauga, E.2008Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett.101 (3), 038102.
[8] Bianchi, S., Saglimbeni, F. & Di Leonardo, R.2017Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys. Rev. X7 (1), 011010.
[9] Burd, A.B. & Jackson, G.A.2009Particle aggregation. Annu. Rev. Mar. Sci.1, 65-90.
[10] Camassa, R., Harris, D.M., Hunt, R., Kilic, Z. & Mclaughlin, R.M.2019A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids. Nat. Commun.10 (1), 5804.
[11] Cruz, B.N. & Neuer, S.2022Particle-associated bacteria differentially influence the aggregation of the marine diatom Minutocellus polymorphus. ISME Commun.2 (1), 73.
[12] Dabiri, J.O.2010Role of vertical migration in biogenic ocean mixing. Geophys. Res. Lett.37 (11), L11602.
[13] Dani, A., Yeganeh, M. & Maldarelli, C.2022Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface. J. Colloid Interface Sci.628, 931-945.
[14] Desai, N. & Ardekani, A.M.2020Biofilms at interfaces: microbial distribution in floating films. Soft Matt.16 (7), 1731-1750.
[15] Drescher, K., Dunkel, J., Cisneros, L.H, Ganguly, S. & Goldstein, R.E.2011Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl Acad. Sci. USA108 (27), 10940-10945.
[16] Durham, W.M. & Stocker, R.2012Thin phytoplankton layers: characteristics, mechanisms, and consequences. Annu. Rev. Mar. Sci.4, 177-207.
[17] Fernández Castro, B., Bouffard, D., Troy, C., Ulloa, H.N., Piccolroaz, S., Sepúlveda Steiner, O., Chmiel, H.E., Serra Moncadas, L., Lavanchy, S. & Wüest, A.2021Seasonality modulates wind-driven mixing pathways in a large lake. Commun. Earth Environ.2 (1), 215.
[18] Font-Muñoz, J.S., Jeanneret, R., Arrieta, J., Anglès, S., Jordi, A., Tuval, I. & Basterretxea, G.2019Collective sinking promotes selective cell pairing in planktonic pennate diatoms. Proc. Natl Acad. Sci. USA116 (32), 15997-16002.
[19] Gokhale, S., Li, J., Solon, A., Gore, J. & Fakhri, N.2022Dynamic clustering of passive colloids in dense suspensions of motile bacteria. Phys. Rev. E105 (5), 054605.
[20] Gonzalez, E., Aponte-Rivera, C. & Zia, R.N.2021Impact of polydispersity and confinement on diffusion in hydrodynamically interacting colloidal suspensions. J. Fluid Mech.925, A35. · Zbl 1482.76113
[21] De Graaf, J. & Stenhammar, J.2017Stirring by periodic arrays of microswimmers. J. Fluid Mech.811, 487-498. · Zbl 1383.76591
[22] Guzmán-Lastra, F., Löwen, H. & Mathijssen, A.J.T.M.2021Active carpets drive non-equilibrium diffusion and enhanced molecular fluxes. Nat. Commun.12 (1), 1906.
[23] Hamada, M., Cueto-Felgueroso, L. & De Anna, P.2020Diffusion limited mixing in confined media. Phys. Rev. Fluids5 (12), 124502.
[24] Happel, J. & Brenner, H.1983Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer Science & Business Media.
[25] Hill, N.A. & Pedley, T.J.2005Bioconvection. Fluid Dyn. Res.37 (1-2), 1-20. · Zbl 1153.76455
[26] Javadi, A., Arrieta, J., Tuval, I. & Polin, M.2020Photo-bioconvection: towards light control of flows in active suspensions. Phil. Trans. R. Soc. A378 (2179), 20190523. · Zbl 1462.76067
[27] Jeanneret, R., Pushkin, D.O, Kantsler, V. & Polin, M.2016Entrainment dominates the interaction of microalgae with micron-sized objects. Nat. Commun.7 (1), 12518.
[28] Jia, Y., Huang, R., Lan, Y., Ren, Y., Jiang, H. & Lee, D.2019Reversible aggregation and dispersion of particles at a liquid-liquid interface using space charge injection. Adv. Mater. Interfaces6 (5), 1801920.
[29] Jin, C., Chen, Y., Maass, C.C. & Mathijssen, A.J.T.M.2021Collective entrainment and confinement amplify transport by schooling microswimmers. Phys. Rev. Lett.127 (8), 088006.
[30] Kanale, A.V., Ling, F., Guo, H., Fürthauer, S. & Kanso, E.2022Spontaneous phase coordination and fluid pumping in model ciliary carpets. Proc. Natl Acad. Sci. USA119 (45), e2214413119.
[31] Kushwaha, P., Semwal, V., Maity, S., Mishra, S. & Chikkadi, V.2023Phase separation of passive particles in active liquids. Phy. Rev. E108 (3), 034603.
[32] Lambert, R.A., Picano, F., Breugem, W. & Brandt, L.2013Active suspensions in thin films: nutrient uptake and swimmer motion. J. Fluid Mech.733, 528-557. · Zbl 1294.76298
[33] Lauga, E.2020The Fluid Dynamics of Cell Motility, vol. 62. Cambridge University Press. · Zbl 1451.92001
[34] Li, G.-J. & Ardekani, A.M.2014Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E90 (1), 013010.
[35] Loi, D., Mossa, S. & Cugliandolo, L.F.2008Effective temperature of active matter. Phys. Rev. E77 (5), 051111.
[36] Madden, I.P., Wang, L., Simmchen, J. & Luijten, E.2022Hydrodynamically controlled self-organization in mixtures of active and passive colloids. Small18 (21), 2107023.
[37] Maheshwari, A.J., Sunol, A.M., Gonzalez, E, Endy, D. & Zia, R.N.2019Colloidal hydrodynamics of biological cells: a frontier spanning two fields. Phys. Rev. Fluids4 (11), 110506.
[38] Mathijssen, A.J.T.M., Doostmohammadi, A., Yeomans, J.M. & Shendruk, T.N.2016Hydrodynamics of micro-swimmers in films. J. Fluid Mech.806, 35-70. · Zbl 1383.76584
[39] Mathijssen, A.J.T.M., Guzmán-Lastra, F., Kaiser, A. & Löwen, H.2018aNutrient transport driven by microbial active carpets. Phys. Rev. Lett.121 (24), 248101.
[40] Mathijssen, A.J.T.M., Jeanneret, R. & Polin, M.2018bUniversal entrainment mechanism controls contact times with motile cells. Phys. Rev. Fluids3 (3), 033103.
[41] Mathijssen, A.J.T.M., Lisicki, M., Prakash, V.N. & Mossige, E.J.L.2023Culinary fluid mechanics and other currents in food science. Rev. Mod. Phys.95, 025004.
[42] Miño, G., Mallouk, T.E., Darnige, T., Hoyos, M., Dauchet, J., Dunstan, J., Soto, R., Wang, Y., Rousselet, A. & Clement, E.2011Enhanced diffusion due to active swimmers at a solid surface. Phys. Rev. Lett.106 (4), 048102.
[43] Miño, G.L., Dunstan, J., Rousselet, A., Clément, E. & Soto, R.2013Induced diffusion of tracers in a bacterial suspension: theory and experiments. J. Fluid Mech.729, 423-444. · Zbl 1291.76376
[44] Morozov, A. & Marenduzzo, D.2014Enhanced diffusion of tracer particles in dilute bacterial suspensions. Soft Matt.10 (16), 2748-2758.
[45] Noto, D. & Ulloa, H.N2023Simple tracking of occluded self-propelled organisms. Meas. Sci. Technol.35 (3), 035705.
[46] Omar, A.K., Wu, Y., Wang, Z.-G. & Brady, J.F.2018Swimming to stability: structural and dynamical control via active doping. ACS Nano13 (1), 560-572.
[47] Ortlieb, L., Rafaï, S., Peyla, P., Wagner, C. & John, T.2019Statistics of colloidal suspensions stirred by microswimmers. Phys. Rev. Lett.122 (14), 148101.
[48] Pedley, T.J. & Kessler, J.O.1992 Bioconvection. Sci. Prog.76 (1), 105-123.
[49] Pellicciotta, N., Hamilton, E., Kotar, J., Faucourt, M., Delgehyr, N., Spassky, N. & Cicuta, P.2020Entrainment of mammalian motile cilia in the brain with hydrodynamic forces. Proc. Natl Acad. Sci. USA117 (15), 8315-8325.
[50] Pushkin, D.O. & Yeomans, J.M.2013Fluid mixing by curved trajectories of microswimmers. Phys. Rev. Lett.111 (18), 188101.
[51] Sengupta, A., Carrara, F. & Stocker, R.2017Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature543 (7646), 555-558.
[52] Sepúlveda Steiner, O., Bouffard, D. & Wüest, A.2019Convection-diffusion competition within mixed layers of stratified natural waters. Geophys. Res. Lett.46 (22), 13199-13208.
[53] Sepúlveda Steiner, O., Bouffard, D. & Wüest, A.2021Persistence of bioconvection-induced mixed layers in a stratified lake. Limnol. Oceanogr.66 (4), 1531-1547.
[54] Sepúlveda Steiner, O., Forrest, A.L., Mcinerney, J.B.T., Fernández Castro, B., Lavanchy, S., Wüest, A. & Bouffard, D.2023Spatial variability of turbulent mixing from an underwater glider in a large, deep, stratified lake. J. Geophys. Res.128 (6), e2022JC018913.
[55] Simoncelli, S., Thackeray, S.J. & Wain, D.J.2017Can small zooplankton mix lakes?Limnol. Oceanogr. Lett.2 (5), 167-176.
[56] Singh, J., Patteson, A.E., Maldonado, B.O.T., Purohit, P.K. & Arratia, P.E.2021Bacterial activity hinders particle sedimentation. Soft Matt.17 (15), 4151-4160.
[57] Škultéty, V., Bárdfalvy, D., Stenhammar, J., Nardini, C. & Morozov, A.2024Hydrodynamic instabilities in a two-dimensional sheet of microswimmers embedded in a three-dimensional fluid. J. Fluid Mech.980, A28.
[58] Sommer, T., et al.2017Bacteria-induced mixing in natural waters. Geophys. Res. Lett.44 (18), 9424-9432.
[59] Takatori, S.C. & Brady, J.F.2015Towards a thermodynamics of active matter. Phys. Rev. E91 (3), 032117.
[60] Vaccari, L., Molaei, M., Niepa, T.H.R., Lee, D., Leheny, R.L. & Stebe, K.J.2017Films of bacteria at interfaces. Adv. Colloid Interface Sci.247, 561-572.
[61] Wang, L.-P., Wexler, A.S. & Zhou, Y.1998On the collision rate of small particles in isotropic turbulence. I. Zero-inertia case. Phys. Fluids10 (1), 266-276.
[62] Wang, S. & Ardekani, A.M.2015Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids. Sci. Rep.5 (1), 17448.
[63] Wioland, H., Lushi, E. & Goldstein, R.E.2016Directed collective motion of bacteria under channel confinement. New J. Phys.18 (7), 075002.
[64] Zhan, C., Sardina, G., Lushi, E. & Brandt, L.2014Accumulation of motile elongated micro-organisms in turbulence. J. Fluid Mech.739, 22-36.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.