×

On the spectrum of dense random geometric graphs. (English) Zbl 1503.05106

Let \(G\) be an \(n\)-vertex undirected graph, and let \(A\) be its adjacency matrix. The degree of the vertex \(i\) is then \(d_i=|N_G(i)|\), the number of neighbours of vertex \(i\) in \(G\), and the Laplacian of \(G\) is defined as \(L:=D-A\), where \(D\) is the diagonal matrix of vertex degrees. The normalized graph Laplacian of \(G\) is defined as \[ \mathcal{L}:=D^{-\frac{1}{2}}LD^{-\frac{1}{2}}. \] Graph Laplacians and their spectra contain important information about the connectivity structure of graphs and the behavior of random walks on them. Graph spectra and harmonics also play key roles in various applications such as network analysis and machine learning.
The random geometric graph \(G(n,r)\) is defined as the undirected graph with vertex set \(\{1,2,\ldots,n\}\), where \(i\) is adjacent to \(j\), if, and only if, \(\|X_i - X_j\|\leq r\), where \(\|\cdot\|\) denotes the norm in \(\mathbb{R}^d\).
In this paper, the authors study the spectrum of the random geometric graph \(G(n,r)\), in a regime where the graph is dense and highly connected. In the Erdös-Rényi random graph \(G(n,p)\), it is well known that upon connectivity the spectrum of the normalized graph Laplacian is concentrated around 1. The authors show that such concentration does not occur in the \(G(n,r)\) case, even when the graph is dense and almost complete. They also show that the limiting spectral gap is strictly smaller than \(1\). In the special case where the vertices are distributed uniformly in the unit cube and \(r = 1\), they prove that for all \(k\in [0,d]\) there exists at least \(\binom{d}{k}\) eigenvalues near \(1-2^{-k}\), and the limiting spectral gap is exactly 1/2. They confirm that the corresponding eigenfunctions in this case are tightly related to the geometric configuration of the points.
The study of this paper has a nice motivation and the results obtained in this paper are interesting.
Reviewer: Shuchao Li (Wuhan)

MSC:

05C80 Random graphs (graph-theoretic aspects)
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
47G10 Integral operators

References:

[1] ALON, N. and CHUNG, F. R. K. (1988). Explicit construction of linear sized tolerant networks. In Proceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986) 72 15-19. · Zbl 0657.05068 · doi:10.1016/0012-365X(88)90189-6
[2] ALON, N. and MILMAN, V. D. (1985). \[{\lambda_1}\], isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38 73-88. · Zbl 0549.05051 · doi:10.1016/0095-8956(85)90092-9
[3] BEIGEL, R., MARGULIS, G. and SPIELMAN, D. A. (1993). Fault diagnosis in a small constant number of parallel testing rounds. In Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures 21-29.
[4] Benaych-Georges, F., Bordenave, C. and Knowles, A. (2020). Spectral radii of sparse random matrices. Ann. Inst. Henri Poincaré Probab. Stat. 56 2141-2161. · Zbl 1459.15036 · doi:10.1214/19-AIHP1033
[5] BOBROWSKI, O. (2019). Homological Connectivity in Random čech Complexes. Available at arXiv:1906.04861. · Zbl 1493.05299
[6] BORDENAVE, C. (2008). Eigenvalues of Euclidean random matrices. Random Structures Algorithms 33 515-532. · Zbl 1158.15020 · doi:10.1002/rsa.20228
[7] Chung, F. R. K. (1997). Spectral Graph Theory. CBMS Regional Conference Series in Mathematics 92. Amer. Math. Soc., Providence, RI. · Zbl 0867.05046
[8] COJA-OGHLAN, A. (2007). On the Laplacian eigenvalues of \[{G_{n,p}}\]. Combin. Probab. Comput. 16 923-946. · Zbl 1127.05062 · doi:10.1017/S0963548307008693
[9] DODZIUK, J. (1984). Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Amer. Math. Soc. 284 787-794. · Zbl 0512.39001 · doi:10.2307/1999107
[10] El Karoui, N. (2010). The spectrum of kernel random matrices. Ann. Statist. 38 1-50. · Zbl 1181.62078 · doi:10.1214/08-AOS648
[11] Erdős, L., Knowles, A., Yau, H.-T. and Yin, J. (2012). Spectral statistics of Erdős-Rényi Graphs II: Eigenvalue spacing and the extreme eigenvalues. Comm. Math. Phys. 314 587-640. · Zbl 1251.05162 · doi:10.1007/s00220-012-1527-7
[12] Erdős, L., Knowles, A., Yau, H.-T. and Yin, J. (2013). Spectral statistics of Erdős-Rényi graphs I: Local semicircle law. Ann. Probab. 41 2279-2375. · Zbl 1272.05111 · doi:10.1214/11-AOP734
[13] Feige, U. and Ofek, E. (2005). Spectral techniques applied to sparse random graphs. Random Structures Algorithms 27 251-275. · Zbl 1076.05073 · doi:10.1002/rsa.20089
[14] Füredi, Z. and Komlós, J. (1981). The eigenvalues of random symmetric matrices. Combinatorica 1 233-241. · Zbl 0494.15010 · doi:10.1007/BF02579329
[15] GARLAND, H. (1973). \(p\)-adic curvature and the cohomology of discrete subgroups of \(p\)-adic groups. Ann. of Math. (2) 97 375-423. · Zbl 0262.22010 · doi:10.2307/1970829
[16] GUNDERT, A. and WAGNER, U. (2016). On eigenvalues of random complexes. Israel J. Math. 216 545-582. · Zbl 1353.05079 · doi:10.1007/s11856-016-1419-1
[17] HOFFMAN, C., KAHLE, M. and PAQUETTE, E. (2021). Spectral gaps of random graphs and applications. Int. Math. Res. Not. IMRN 11 8353-8404. · Zbl 1473.05285 · doi:10.1093/imrn/rnz077
[18] Hoory, S., Linial, N. and Wigderson, A. (2006). Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43 439-561. · Zbl 1147.68608 · doi:10.1090/S0273-0979-06-01126-8
[19] Horn, R. A. and Johnson, C. R. (2013). Matrix Analysis, 2nd ed. Cambridge Univ. Press, Cambridge. · Zbl 1267.15001
[20] KAHLE, M. (2014). Sharp vanishing thresholds for cohomology of random flag complexes. Ann. of Math. (2) 179 1085-1107. · Zbl 1294.05195 · doi:10.4007/annals.2014.179.3.5
[21] KNOWLES, A. and ROSENTHAL, R. (2017). Eigenvalue confinement and spectral gap for random simplicial complexes. Random Structures Algorithms 51 506-537. · Zbl 1373.05222 · doi:10.1002/rsa.20710
[22] Koltchinskii, V. and Giné, E. (2000). Random matrix approximation of spectra of integral operators. Bernoulli 6 113-167. · Zbl 0949.60078 · doi:10.2307/3318636
[23] LataŁa, R., van Handel, R. and Youssef, P. (2018). The dimension-free structure of nonhomogeneous random matrices. Invent. Math. 214 1031-1080. · Zbl 1457.60011 · doi:10.1007/s00222-018-0817-x
[24] Leighton, T. and Shor, P. (1989). Tight bounds for minimax grid matching with applications to the average case analysis of algorithms. Combinatorica 9 161-187. · Zbl 0686.68039 · doi:10.1007/BF02124678
[25] MARCHAL, O. and ARBEL, J. (2017). On the sub-Gaussianity of the beta and Dirichlet distributions. Electron. Commun. Probab. 22 Paper No. 54. · Zbl 1395.60016 · doi:10.1214/17-ECP92
[26] MOHAR, B. and WOESS, W. (1989). A survey on spectra of infinite graphs. Bull. Lond. Math. Soc. 21 209-234. · Zbl 0645.05048 · doi:10.1112/blms/21.3.209
[27] Penrose, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford. · Zbl 1029.60007 · doi:10.1093/acprof:oso/9780198506263.001.0001
[28] ROSS, S. M. (2014). Introduction to Probability Models, 11th ed. Elsevier/Academic Press, Amsterdam. · Zbl 1284.60002
[29] SHI, J. and MALIK, J. (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22 888-905.
[30] Shor, P. W. and Yukich, J. E. (1991). Minimax grid matching and empirical measures. Ann. Probab. 19 1338-1348. · Zbl 0734.60005
[31] SILVA, A. and TUCCI, G. H. (2011). On the spectral characteristics of ad-hoc networks and their mobility properties. In Mobile Ad-Hoc and Sensor Networks (MSN), 2011 Seventh International Conference on 215-222. IEEE, New York.
[32] SZEGEDY, B. (2011). Limits of kernel operators and the spectral regularity lemma. European J. Combin. 32 1156-1167. · Zbl 1230.05177 · doi:10.1016/j.ejc.2011.03.005
[33] TANNER, R. M. (1984). Explicit concentrators from generalized \(N\)-gons. SIAM J. Algebr. Discrete Methods 5 287-293. · Zbl 0554.05045 · doi:10.1137/0605030
[34] von Luxburg, U. (2007). A tutorial on spectral clustering. Stat. Comput. 17 395-416. · doi:10.1007/s11222-007-9033-z
[35] Vu, V. H. (2007). Spectral norm of random matrices. Combinatorica 27 721-736 · Zbl 1164.05066 · doi:10.1007/s00493-007-2190-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.