×

A novel compact broadband and radiation efficient antenna design for medical IoT healthcare system. (English) Zbl 1490.78005

Summary: This paper investigates and develops a novel compact broadband and radiation efficient antenna design for the medical internet of things (M-IoT) healthcare system. The proposed antenna comprises of an umbrella-shaped metallic ground plane (UsMGP) and an improved radiator. A hybrid approach is employed to obtain the optimal results of antenna. The proposed solution is primarily based on the utilization of etching slots and a loaded stub on the ground plane and rectangular patch. The antenna consists of a simple rectangular patch, a 50 \(\Omega\) microstrip feed line, and a portion of the ground plane printed on a relatively inexpensive flame retardant material (FR4) thick substrate with an overall compact dimension of \(22 \times 28 \times 1.5\) mm\(^3\). The proposed antenna offers compact, broadband and radiation efficient features. The antenna is carefully designed by employing the approximate calculation formulae extracted from the transmission line model. Besides, the parameters study of important variables involved in the antenna design and its influence on impedance matching performance are analyzed. The antenna shows high performance, including impedance bandwidth of 7.76 GHz with a range of 3.65–11.41 GHz results in 103% wider relative bandwidth at 10 dB return loss, 82% optimal radiation efficiency in the operating band, reasonable gain performance, stable monopole-shaped radiation patterns and strong current distribution across the antenna lattice. The suggested antenna is manufactured, and simulation experiments evaluate its performance. The findings indicate that the antenna is well suited for medical IoT healthcare systems applications.

MSC:

78A50 Antennas, waveguides in optics and electromagnetic theory
78A40 Waves and radiation in optics and electromagnetic theory
35B36 Pattern formations in context of PDEs

References:

[1] M, A modified meander line microstrip patch antenna with enhanced bandwidth for 2.4 GHz ISM-band internet of things (IoT) applications, IEEE Access, 7, 127850-127861 (2019) · doi:10.1109/ACCESS.2019.2940049
[2] M. Bansal, B. Gandhi, IoT based development boards for smart healthcare applications, in <i>2018 4<sup>th</sup> International Conference on Computer Communication Automation (ICCCA)</i>, (2018), 1-7. <a href=“https://doi.org/10.1109/CCAA.2018.8777572” target=“_blank”>https://doi.org/10.1109/CCAA.2018.8777572</a>
[3] K, Compact planar multistandard MIMO antenna for IoT applications, IEEE Trans. Antennas Propag., 66, 3327-3336 (2018) · doi:10.1109/TAP.2018.2829533
[4] B, A circularly polarized low-cost flat panel antenna array with a high impedance surface meta-substrate for satellite on-the-move medical IoT applications, IEEE Trans. Antennas Propag., 69, 6076-6081 (2021) · doi:10.1109/TAP.2021.3070011
[5] B, IoT-based applications in healthcare devices, J. Healthcare Eng. (2021) · doi:10.1155/2021/6632599
[6] T, A novel cluster head selection technique for edge-computing based IoMT systems, Comput. Networks, 158, 114-122 (2019) · doi:10.1016/j.comnet.2019.04.021
[7] S, A novel secure IoT-based smart home automation system using a wireless sensor network, Sensors (Switzerland), 17, 1-19 (2017) · doi:10.3390/s17010069
[8] M. Pazhoohesh, M. S. Javadi, M. Gheisari, S. Aziz, R. Villa, Dealing with missing data in the smart buildings using innovative imputation techniques, in <i>IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society</i>, (2021), 1-7, <a href=“https://doi.org/10.1109/iecon48115.2021.9612650” target=“_blank”>https://doi.org/10.1109/iecon48115.2021.9612650</a>
[9] A, Power control algorithms for media transmission in remote healthcare systems, IEEE Access, 6, 42384-42393 (2018) · doi:10.1109/ACCESS.2018.2859205
[10] S, An efficient biometric-based algorithm using heart rate variability for securing body sensor networks, Sensors (Switzerland), 15, 15067-15089 (2015) · doi:10.3390/s150715067
[11] Y, A framework for efficient brain tumor classification using MRI images, Math. Biosci. Eng., 18, 5790-5815 (2021) · Zbl 1501.92071 · doi:10.3934/MBE.2021292
[12] A, 5G-based transmission power control mechanism in fog computing for internet of things devices, Sustainability, 10, 1-17 (2018) · doi:10.3390/su10041258
[13] S, Internet of things (IoT) for smart healthcare: technologies, challenges and opportunities, IEEE Access, 5, 26521-26544 (2017) · doi:10.1109/ACCESS.2017.2775180
[14] S, Heartbeats based biometric random binary sequences generation to secure wireless body sensor networks, IEEE Trans. Biomed. Eng., 65, 2751-2759 (2018) · doi:10.1109/TBME.2018.2815155
[15] Z, A compact high-gain coplanar waveguide-fed antenna for military RADAR applications, Int. J. Antennas Propag., 2020, 1-10 (2020) · doi:10.1155/2020/8024101
[16] T. Gayatri, N. Anveshkumar, V. K. Sharma, A compact planar UWB antenna for spectrum sensing in cognitive radio, in <i>International Conference on Emerging Trends in Information Technology and Engineering</i>, (2020), 1-5. <a href=“https://doi.org/10.1109/ic-ETITE47903.2020.384” target=“_blank”>https://doi.org/10.1109/ic-ETITE47903.2020.384</a>
[17] P, A compact broadband and high gain tapered slot antenna with stripline feeding network for H. X, Ku and K band applications, Int. J. Adv. Comput. Sci. Appl., 11, 239-244 (2021) · doi:10.14569/IJACSA.2020.0110731
[18] S, Ultra wide band CPW-fed circularly polarized microstrip antenna for wearable applications, Wirel. Pers. Commun., 108, 87-106 (2019) · doi:10.1007/s11277-019-06389-9
[19] G, Compact wideband tapered-fed printed bow-tie antenna with rectangular edge extension, Microw. Opt. Technol. Lett., 61, 1394-1399 (2019) · doi:10.1002/mop.31733
[20] L, A novel miniaturized planar ultra-wideband antenna, IEEE Access, 7, 2769-2773 (2019) · doi:10.1109/ACCESS.2018.2886799
[21] M, Design of a compact, wideband, bidirectional antenna using index-gradient patches, IEEE Antennas Wirel. Propag. Lett., 17, 1218-1222 (2018) · doi:10.1109/LAWP.2018.2839900
[22] Y, Compact folded C-shaped antenna for metal-mountable UHF RFID applications, IEEE Trans. Antennas Propag., 67, 765-773 (2019) · doi:10.1109/TAP.2018.2879853
[23] N, Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures, Wirel. Networks, 24, 383-393 (2018) · doi:10.1007/s11276-016-1343-7
[24] P, Elliptical shaped wide slot monopole patch antenna with crossed shaped parasitic element for WLAN. Wi-MAX, and UWB application, Microw. Opt. Technol. Lett., 62, 899-905 (2020) · doi:10.1002/mop.32100
[25] S, A novel design of a planar antenna with modified patch and defective ground plane for ultra-wideband applications, Microw. Opt. Technol. Lett., 61, 1320-1327 (2019) · doi:10.1002/mop.31716
[26] Y, A novel compact ultra-wideband antenna with quad notched bands based on s-sCRLHs resonator, Wirel. Pers. Commun., 97, 4667-4679 (2017) · doi:10.1007/s11277-017-4744-8
[27] N, A compact CPW-fed planar stacked circle patch antenna for wideband applications, Wirel. Pers. Commun., 116, 3247-3260 (2021) · doi:10.1007/s11277-020-07847-5
[28] A, Probe-Fed Hexagonal Ultra Wideband Antenna Using Flangeless SMA Connector, Wireless Pers. Commun., 110, 973-982 (2020) · doi:10.1007/s11277-019-06768-2
[29] K, Modified trident UWB printed monopole antenna, Wirel. Pers. Commun., 109, 1689-1697 (2019) · doi:10.1007/s11277-019-06646-x
[30] S, Design and implementation of UWB slot-loaded printed antenna for microwave and millimeter wave applications, IEEE Access, 9, 29555-29564 (2021) · doi:10.1109/ACCESS.2021.3057941
[31] Q. Y. Guo, H. Wong, Wideband and high-gain fabry-pérot cavity antenna with switched beams for milimeter-wave applications, <b>67</b> (2019), 4339-4347. <a href=“https://doi.org/10.1109/TAP.2019.2905781” target=“_blank”>https://doi.org/10.1109/TAP.2019.2905781</a>
[32] R, Single-layer line-fed broadband microstrip patch antenna on thin substrates, Electronics (Switzerland), 10, 1-14 (2021) · doi:10.3390/electronics10010037
[33] M, A miniaturized printed antenna with extended circular patch and partial ground plane for UWB applications, Wirel. Pers. Commun., 116, 311-323 (2021) · doi:10.1007/s11277-020-07716-1
[34] K, Design aspects of printed monopole antennas for ultra-wide band applications, Int. J. Antennas Propag., 2008, 1-8 (2008) · doi:10.1155/2008/713858
[35] S, Miniaturized dual broadband printed slot antenna with parasitic slot and patch, Microw. Opt. Technol. Lett., 56, 2260-2265 (2014) · doi:10.1002/mop.28567
[36] H, Bandwidth enhancement of a cpw-fed monopole antenna with small fractal elements, AEU Int. J. Electron. Commun., 69, 590-595 (2015) · doi:10.1016/j.aeue.2014.11.011
[37] Y, Wideband monopole antenna with three band-notched characteristics, IEEE Antennas Wirel. Propag. Lett., 13, 607-610 (2014) · doi:10.1109/LAWP.2014.2313178
[38] C, Higher mode discrimination in a rectangular patch: new insight leading to improved design with consistently low cross-polar radiations, IEEE Trans. Antennas Propag., 69, 708-714 (2021) · doi:10.1109/TAP.2020.3016506
[39] S, A compact umbrella shaped UWB antenna for ground-coupling GPR applications, Microw. Opt. Technol. Lett., 60, 146-151 (2018) · doi:10.1002/mop.30928
[40] H, A wideband u-shaped slot antenna and its application in MIMO terminals, IEEE Antennas Wirel. Propag. Lett., 15, 508-511 (2016) · doi:10.1109/LAWP.2015.2455237
[41] S, Palm tree structured wide band monopole antenna, Int. J. Microw. Wirel. Technol., 8, 1077-1084 (2016) · doi:10.1017/S1759078715000434
[42] M, Design of compact planar triple band-notch monopole antenna for ultra-wideband applications, Wirel. Pers. Commun., 97, 3531-3545 (2017) · doi:10.1007/s11277-017-4684-3
[43] P, Design and development of single & dual resonant frequency antennas for moisture content measurement, Wirel. Pers. Commun., 114, 565-582 (2020) · doi:10.1007/s11277-020-07382-3
[44] P, A small ACS-fed tri-band antenna employing C and L shaped radiating branches for LTE/WLAN/WiMAX/ITU wireless communication applications, Analog Integr. Circuits Signal Process., 85, 489-496 (2015) · doi:10.1007/s10470-015-0637-5
[45] Z. A. Dayo, Q. Cao, P. Soothar, M. M. Lodro, Y. Li, A compact coplanar waveguide feed bow-tie slot antenna for WIMAX, C and X band applications, in <i>2019 IEEE International Conference on Computational Electromagnetics (ICCEM) Shanghai China</i>, (2019), 1-3, <a href=“https://doi.org/10.1109/COMPEM.2019.8779099” target=“_blank”>https://doi.org/10.1109/COMPEM.2019.8779099</a>
[46] Z. A. Dayo, Q. Cao, Y. Wang, P. Soothar, A compact high gain multiband bow-tie slot antenna, in <i>2019 International Applied Computational Electromagnetics Society Symposium-China (ACES)</i>, <b>1</b> (2019), 1-2. <a href=“https://doi.org/10.23919/ACES48530.2019.9060736” target=“_blank”>https://doi.org/10.23919/ACES48530.2019.9060736</a>
[47] M, A UHF CPW-fed patch antenna for nanosatellite store and forward mission, Microsyst. Technol., 26, 2399-2405 (2020) · doi:10.1007/s00542-020-04780-2
[48] S, Design and analysis of super-formula-based UWB monopole antenna and its MIMO configuration, Wirel. Pers. Commun., 94, 3389-3401 (2017) · doi:10.1007/s11277-016-3782-y
[49] N, Development of a reconfigurable and miniaturized CPW antenna for selective and wideband communication, Wirel. Pers. Commun., 95, 2599-2608 (2017) · doi:10.1007/s11277-017-3942-8
[50] L, A quad-polarization reconfigurable antenna with suppressed cross polarization based on characterstics mode theory, IEEE Trans. Antennas Propag., 69, 636-647 (2021) · doi:10.1109/TAP.2020.3016384
[51] Z, A compact high gain multiband bowtie slot antenna with miniaturized triangular shaped metallic ground plane, Appl. Comput. Electromagn. Soc. J., 36, 935-945 (2021) · doi:10.47037/2021.ACES.J.360717
[52] A. Kurniawan, S. Mukhlishin, Wideband antenna design and fabrication for modern wireless communications systems, in <i>Procedia Technolog</i>y <i>(Iceei)</i>, <b>11</b> (2013), 348-353. <a href=“https://doi.org/10.1016/j.protcy.2013.12.201” target=“_blank”>https://doi.org/10.1016/j.protcy.2013.12.201</a>
[53] Z, A compact broadband high gain antenna using slotted inverted omega shape ground plane and tuning stub loaded radiator, Wirel. Pers. Commun., 113, 499-518 (2020) · doi:10.1007/s11277-020-07227-z
[54] K, Design of a reduced-size crossed-dipole antenna, IEEE Trans. Antennas Propag., 69, 689-697 (2021) · doi:10.1109/TAP.2020.3016392
[55] W, Low-profile artificial grid dielectric resonator antenna arrays for mm-wave applications, IEEE Trans. Antennas Propag., 67, 4406-4417 (2019) · doi:10.1109/TAP.2019.2907610
[56] P, A broadband high gain rapered slot antenna for underwater communication in microwave band, Wirel. Pers. Commun., 116, 1025-1042 (2021) · doi:10.1007/s11277-019-06633-2
[57] L, Ultrawideband conformal transmitarray employing connected slot-bowtie elements, IEEE Trans. Antennas Propag., 69, 3273-3283 (2021) · doi:10.1109/TAP.2020.3037785
[58] J, A compact reflector antenna fed by a composite S/Ka-band feed for 5G wireless communications, IEEE Trans. Antennas Propag., 68, 7813-7821 (2020) · doi:10.1109/TAP.2020.3000858
[59] S, Design and optimization of multiport pixel antennas, IEEE Trans. Antennas Propag., 66, 2049-2054 (2018) · doi:10.1109/TAP.2018.2800759
[60] Z, A compact broadband antenna for civil and military wireless communication applications, Int. J. Adv. Comput. Sci. Appl., 10, 39-44 (2019) · doi:10.14569/ijacsa.2019.0100906
[61] J, A wideband high-gain cavity-backed low-profile dipole antenna, IEEE Trans. Antennas Propag., 64, 5465-5469 (2016) · doi:10.1109/TAP.2016.2620607
[62] T, Ultrawideband planar dipole antenna with a modified taegeuk structure, IEEE Antennas Wirel. Propag. Lett., 14, 194-197 (2015) · doi:10.1109/LAWP.2014.2359936
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.