×

Adaptive fixed-time fuzzy fault-tolerant control for robotic manipulator with unknown friction and composite actuator faults. (English) Zbl 1543.93205

Summary: This paper exploits the issue of fixed-time (FT) tracking control (TC) for uncertain robotic manipulator systems (RMS) with composite actuator faults (CAFs), unknown disturbances and joint friction. The fuzzy logic system (FLS) algorithm is introduced to fit the unknown uncertainties including unmodeled parameters, CAFs and joint friction of the RMS, after which a relevant updating algorithm is employed to generate the unidentified boundary of the plant disturbance and FLS approximation error. Then a novel adaptive fuzzy sliding mode (SM) fault-tolerant controller is synthesized, which not only guarantees the boundedness of estimation errors of the involved adaptive parameters, but also actualizes the reachability of the predevised sliding surface. Furthermore, the proof that the system trajectories can achieve the FT convergence to the expected position signals, is then provided on account of the FT stability theory. Ultimately, simulation experiments exhibit the rationality based upon the current control algorithm.

MSC:

93C40 Adaptive control/observation systems
93D40 Finite-time stability
93C42 Fuzzy control/observation systems
93C85 Automated systems (robots, etc.) in control theory
93B12 Variable structure systems
Full Text: DOI

References:

[1] Zhou, B.; Yang, L.; Wang, C.; Lai, G.; Chen, Y., Adaptive finite-time tracking control of robot manipulators with multiple uncertainties based on a low-cost neural approximator, J. Franklin Inst., 359, 10, 4938-4958, 2022 · Zbl 1491.93072
[2] Wu, Y.; Fang, H.; Xu, T.; Wan, F., Adaptive neural fixed-time sliding mode control of uncertain robotic manipulators with input saturation and prescribed constraints, Neural Process. Lett., 54, 5, 3829-3849, 2022
[3] Su, Y.; Müller, P. C.; Zheng, C., Global asymptotic saturated PID control for robot manipulators, IEEE Trans. Control Syst. Technol., 18, 6, 1280-1288, 2010
[4] Sarkar, A.; Maji, K.; Chaudhuri, S.; Saha, R.; Mookherjee, S.; Sanyal, D., Actuation of an electrohydraulic manipulator with a novel feedforward compensation scheme and PID feedback in servo-proportional valves, Control Eng. Pract., 135, Article 105490 pp., 2023
[5] Lyu, W.; Zhai, D.-H.; Xiong, Y.; Xia, Y., Predefined performance adaptive control of robotic manipulators with dynamic uncertainties and input saturation constraints, J. Franklin Inst., 358, 14, 7142-7169, 2021 · Zbl 1471.93155
[6] Liu, Z.; Chen, X.; Yu, J., Adaptive sliding mode security control for stochastic Markov jump cyber-physical nonlinear systems subject to actuator failures and randomly occurring injection attacks, IEEE Trans. Ind. Inform., 19, 3, 3155-3165, 2023
[7] Parsa, P.; Akbarzadeh-T, M.-R.; Baghbani, F., Command-filtered backstepping robust adaptive emotional control of strict-feedback nonlinear systems with mismatched uncertainties, Inform. Sci., 579, 434-453, 2021 · Zbl 1533.93813
[8] Li, Y.-X., Command filter adaptive asymptotic tracking of uncertain nonlinear systems with time-varying parameters and disturbances, IEEE Trans. Autom. Control, 67, 6, 2973-2980, 2022 · Zbl 1537.93404
[9] Zhang, J.; Liu, Z.; Jiang, B., Neural network-based adaptive reliable control for nonlinear Markov jump systems against actuator attacks, Nonlinear Dynam., 111, 13985-13999, 2023
[10] Zhao, X.; Liu, Z.; Jiang, B.; Gao, C., Switched controller design for robotic manipulator via neural network-based sliding mode approach, IEEE Trans. Circuits Syst. II, 70, 2, 561-565, 2023
[11] Zhao, J.; Jiang, S.; Xie, F.; Wang, X.; Li, Z., Adaptive dynamic sliding mode control for space manipulator with external disturbance, J. Control Decis., 6, 4, 236-251, 2019
[12] Chávez-Vázquez, S.; Lavín-Delgado, J. E.; Gómez-Aguilar, J. F.; Razo-Hernández, J. R.; Etemad, S.; Rezapour, S., Trajectory tracking of stanford robot manipulator by fractional-order sliding mode control, Appl. Math. Model., 120, 436-462, 2023 · Zbl 1525.70017
[13] Ling, S.; Wang, H.; Liu, P. X., Adaptive fuzzy tracking control of flexible-joint robots based on command filtering, IEEE Trans. Ind. Electron., 67, 5, 4046-4055, 2020
[14] Sun, J.; Yi, J.; Pu, Z., Fixed-time adaptive fuzzy control for uncertain nonstrict-feedback systems with time-varying constraints and input saturations, IEEE Trans. Fuzzy Syst., 30, 4, 1114-1128, 2022
[15] Xie, Z.; Sun, T.; Kwan, T.; Wu, X., Motion control of a space manipulator using fuzzy sliding mode control with reinforcement learning, Acta Astronaut., 176, 156-172, 2020
[16] McIntyre, M.; Dixon, W.; Dawson, D.; Walker, I., Fault identification for robot manipulators, IEEE Trans. Robot., 21, 5, 1028-1034, 2005
[17] Van, M.; Ge, S. S., Adaptive fuzzy integral sliding-mode control for robust fault-tolerant control of robot manipulators with disturbance observer, IEEE Trans. Fuzzy Syst., 29, 5, 1284-1296, 2021
[18] Liu, L.; Zhang, L.; Wang, Y.; Hou, Y., A novel robust fixed-time fault-tolerant tracking control of uncertain robot manipulators, IET Control Theory Appl., 15, 2, 195-208, 2021
[19] Zhang, S.; Yang, P.; Kong, L.; Chen, W.; Fu, Q.; Peng, K., Neural networks-based fault tolerant control of a robot via fast terminal sliding mode, IEEE Trans. Syst. Man Cybern. Syst., 51, 7, 4091-4101, 2021
[20] Wang, L.; Chai, T.; Zhai, L., Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics, IEEE Trans. Ind. Electron., 56, 9, 3296-3304, 2009
[21] Hong, M.; Gu, X.; Liu, L.; Guo, Y., Finite time extended state observer based nonsingular fast terminal sliding mode control of flexible-joint manipulators with unknown disturbance, J. Franklin Inst., 360, 1, 18-37, 2023 · Zbl 1506.93079
[22] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57, 8, 2106-2110, 2012 · Zbl 1369.93128
[23] Zhu, C.; Jiang, Y.; Yang, C., Fixed-time neural control of robot manipulator with global stability and guaranteed transient performance, IEEE Trans. Ind. Electron., 70, 1, 803-812, 2023
[24] Zhang, L.; Liu, H.; Tang, D.; Hou, Y.; Wang, Y., Adaptive fixed-time fault-tolerant tracking control and its application for robot manipulators, IEEE Trans. Ind. Electron., 69, 3, 2956-2966, 2022
[25] Xu, S.; He, B., Robust adaptive fuzzy fault tolerant control of robot manipulators with unknown parameters, IEEE Trans. Fuzzy Syst., 31, 9, 3081-3092, 2023
[26] Van, M.; Sun, Y.; Mcllvanna, S.; Nguyen, M.-N.; Khyam, M. O.; Ceglarek, D., Adaptive fuzzy fault tolerant control for robot manipulators with fixed-time convergence, IEEE Trans. Fuzzy Syst., 31, 9, 3210-3219, 2023
[27] Liu, J., Robot Control System Design and Matlab Simulation, 46, 2016, Tsinghua University Press: Tsinghua University Press Beijing
[28] Zhao, X.; Liu, Z.; Zhu, Q., Neural network-based adaptive controller design for robotic manipulator subject to varying loads and unknown dead-zone, Neurocomputing, 546, Article 126293 pp., 2023
[29] Song, Y.; Ye, H.; Lewis, F. L., Prescribed-time control and its latest developments, IEEE Trans. Syst. Man Cybern. Syst., 53, 7, 4102-4116, 2023
[30] Qin, H.; Yang, H.; Sun, Y.; Feng, L., Fixed-time stable bilateral teleoperation of underwater manipulator using prescribed performance terminal sliding surfaces, J. Franklin Inst., 360, 4, 3280-3306, 2023 · Zbl 1508.93261
[31] Liu, Z.; Zhao, Y.; Zhang, O.; Chen, W.; Wang, J.; Gao, Y.; Liu, J., A novel faster fixed-time adaptive control for robotic systems with input saturation, IEEE Trans. Ind. Electron., 71, 5, 5215-5223, 2024
[32] Bounemeur, A.; Chemachema, M., General fuzzy adaptive fault-tolerant control based on nussbaum-type function with additive and multiplicative sensor and state-dependent actuator faults, Fuzzy Sets and Systems, 468, Article 108616 pp., 2023
[33] Bounemeur, A.; Chemachema, M., Adaptive fuzzy fault-tolerant control using Nussbaum-type function with state-dependent actuator failures, Neural Comput. Appl., 33, 191-208, 2021
[34] Bounemeur, A.; Chemachema, M.; Essounbouli, N., Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures, ISA Trans., 79, 45-61, 2018
[35] Khalil, H.; Grizzle, J., Nonlinear Systems, 2005, Prentice-Hall: Prentice-Hall Upper SaddleRiver, NJ, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.