×

Input design analysis for the capacity of finite impulse response actuator. (English) Zbl 07929833

Liang, Qilian (ed.) et al., Communications, signal processing, and systems. Proceedings of the 11th international conference, virtual, July 23–24, 2022. Vol. 3. Cham: Springer. Lect. Notes Electr. Eng. 874, 1-8 (2023).
Summary: Mutual information (MI) is usually a computational heavy work when used as optimal metric in control system. In this paper, the modeling of Finite Impulse Response (FIR) system with entropy-rate framework is shown. A practical signal sampling algorithm to calculate the MI in the case of probability density function (PDF) with regenerative property is given. The MI calculation method is based on random sampling, which can reduce the computational complexity. The simulation results show our entropy-rate framework can be employed in analysis for the capacity of FIR actuator.
For the entire collection see [Zbl 1537.94008].

MSC:

93-XX Systems theory; control
94A15 Information theory (general)
94A17 Measures of information, entropy
Full Text: DOI

References:

[1] Nair, GN; Fagnani, F.; Zampieri, S.; Evans, RJ, Feedback control under data rate constraints: an overview, Proc. IEEE, 95, 1, 108-137 (2007) · doi:10.1109/JPROC.2006.887294
[2] Tatikonda, S.; Mitter, S., Control under communication constraints, IEEE Trans. Autom. Control, 49, 7, 1056-1068 (2004) · Zbl 1365.93271 · doi:10.1109/TAC.2004.831187
[3] Borkar, V.S., Mitter, S.: LQG control with communication constraints. In: Communications, Computation, Control, and Signal Processing: A Tribute to Thomas Kailath. Kluwer, Norwell (1997)
[4] Touchette, H.; Lloyd, S., Information-theoretic approach to the study of control systems, Physica A, 331, 1, 140-172 (2004) · doi:10.1016/j.physa.2003.09.007
[5] Bania, P., Bayesian input design for linear dynamical model discrimination, Entropy, 21, 4, 351 (2019) · doi:10.3390/e21040351
[6] Bania, P., An information based approach to stochastic control problems, Int. J. Appl. Math. Comput. Sci., 30, 1, 23-34 (2020) · Zbl 1461.93482
[7] Zhu, Q., A novel 3D non-stationary wireless MIMO channel simulator and hardware emulator, IEEE Trans. Commun., 66, 9, 3865-3878 (2018) · doi:10.1109/TCOMM.2018.2824817
[8] Zhu, Q.; Zhao, Z.; Mao, K.; Chen, X.; Liu, W.; Wu, Q., A real-time hardware emulator for 3D non-stationary U2V channels, IEEE Trans. Circ. Syst. I: Reg. Pap., 68, 9, 3951-3964 (2021)
[9] Zhu, Q.; Bai, F.; Pang, M., Geometry-based stochastic line-of-sight probability model for A2G channels under urban scenarios, IEEE Trans. Ant. Propag., 70, 5784-5794 (2022) · doi:10.1109/TAP.2022.3161277
[10] Li, K.; Baillieul, J., Robust quantization for digital finite communication bandwidth (DFCB) control, IEEE Trans. Autom. Control, 49, 9, 1573-1584 (2004) · Zbl 1365.93280 · doi:10.1109/TAC.2004.834106
[11] Wong, WS; Brockett, RW, Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback, IEEE Trans. Autom. Control, 44, 5, 1049-1053 (1999) · Zbl 1136.93429 · doi:10.1109/9.763226
[12] Baillieul, J.: Matching conditions and geometric invariants for second-order control systems. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 2, pp. 1664-1670 (1999)
[13] Charalambous, CD; Kourtellaris, CK; Tzortzis, I., Information transfer of control strategies: dualities of stochastic optimal control theory and feedback capacity of information theory, IEEE Trans. Autom. Control, 62, 10, 5010-5025 (2017) · Zbl 1390.93863 · doi:10.1109/TAC.2017.2690147
[14] Nekouei, E.; Tanaka, T.; Skoglund, M., Information-theoretic approaches to privacy in estimation and control, Ann. Rev. Control, 47, 412-422 (2019) · doi:10.1016/j.arcontrol.2019.04.006
[15] Fang, S., Skoglund, M., Johansson, K.H., Ishii, H., Zhu, Q.: Generic variance bounds on estimation and prediction errors in time series analysis: an entropy perspective. In: 2019 IEEE Information Theory Workshop (ITW), pp. 1-5 (2019)
[16] Fang, S., Zhu, Q.: Fundamental limits of obfuscation for linear gaussian dynamical systems: an information-theoretic approach. In: 2021 American Control Conference (ACC), pp. 4574-4579 (2021)
[17] Grenander, U.; Szego, G., Toeplitz Forms and Their Applications (1958), Berkeley: University of California Press, Berkeley · Zbl 0080.09501 · doi:10.1063/1.3062237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.