×

Quasi-classical Spin Boson models. (English) Zbl 07920804

Correggi, Michele (ed.) et al., Quantum mathematics I. Contributions based on the presentations at the INdAM quantum meetings, IQM22, Milan, Italy, spring 2022. Singapore: Springer. Springer INdAM Ser. 57, 107-127 (2023).
Summary: In this short note we study Spin-Boson Models from the Quasi-Classical standpoint. In the Quasi-Classical limit, the field becomes macroscopic while the particles it interacts with, they remain quantum. As a result, the field becomes a classical environment that drives the particle system with an explicit effective dynamics.
For the entire collection see [Zbl 1531.81008].

MSC:

81-XX Quantum theory

References:

[1] Arai, A.; Hirokawa, M., On the existence and uniqueness of ground states of a generalized spin-boson model, J. Funct. Anal., 151, 2, 455-503, 1997 · Zbl 0898.47048 · doi:10.1006/jfan.1997.3140
[2] Ammari, Z., Nier, F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. Henri Poincaré 9(8), 1503-1574 (2008). doi:10.1007/s00023-008-0393-5. arXiv:0711.4128 · Zbl 1171.81014
[3] Ammari, Z., Nier, F.: Mean field limit for bosons and propagation of Wigner measures. J. Math. Phys. 50(4), 042107 (2009). doi:10.1063/1.3115046. arXiv:0807.3108 · Zbl 1214.81089
[4] Ammari, Z., Nier, F.: Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states. J. Math. Pures Appl. 95(6), 585-626 (2011). doi:10.1016/j.matpur.2010.12.004. arXiv:1003.2054 · Zbl 1251.81062
[5] Ammari, Z., Nier, F.: Mean field propagation of infinite-dimensional Wigner measures with a singular two-body interaction potential. Ann. Sc. Norm. Super. Pisa Cl. Sci. XIV(1), 155-220 (2015). doi:10.2422/2036-2145.201112_004. arXiv:1111.5918 · Zbl 1341.81037
[6] Amour, L., Lascar, R., Nourrigat, J.: Weyl calculus in Wiener spaces and in QED (2016). arXiv:1610.06379
[7] Amour, L., Jager, L., Nourrigat, J.: Infinite dimensional semiclassical analysis and applications to a model in NMR (2017). arXiv:1705.07097
[8] Amour, L., Lascar, R., Nourrigat, J.: Weyl calculus in QED I. The unitary group. J. Math. Phys. 58(1), 013501 (2017). doi:10.1063/1.4973742. arXiv:1510.05293 · Zbl 1355.81158
[9] Arai, A., An asymptotic analysis and its application to the nonrelativistic limit of the Pauli-Fierz and a spin-boson model, J. Math. Phys., 31, 11, 2653-2663, 1990 · Zbl 0734.47046 · doi:10.1063/1.528966
[10] Arai, A., A theorem on essential selfadjointness with application to Hamiltonians in nonrelativistic quantum field theory, J. Math. Phys., 32, 8, 2082-2088, 1991 · Zbl 0753.47004 · doi:10.1063/1.529178
[11] Carlone, R., Correggi, M., Falconi, M., Olivieri, M.: Emergence of time-dependent point interactions in polaron models. SIAM J. Math. Anal. 53(4), 4657-4691 (2021). doi:10.1137/20M1381344. arXiv:1904.11012 · Zbl 1477.81037
[12] Correggi, M., Falconi, M.: Effective potentials generated by field interaction in the quasi-classical limit. Ann. Henri Poincaré 19(1), 189-235 (2018). . arXiv:1701.01317 · Zbl 1392.81132
[13] Correggi, M., Falconi, M., Olivieri, M.: Magnetic Schrödinger operators as the quasi-classical limit of Pauli-Fierz-type models. J. Spectr. Theory 9(4), 1287-1325 (2019). . arXiv:1711.07413 · Zbl 1433.81087
[14] Correggi, M., Falconi, M., Olivieri, M.: Ground state properties in the quasi-classical regime. Anal. PDE (2022, in press). arXiv:2007.09442
[15] Correggi, M.; Falconi, M.; Olivieri, M., Quasi-classical dynamics, J. Eur. Math. Soc., 25, 731-783, 2023 · Zbl 1520.81067 · doi:10.4171/JEMS/1197
[16] Cook, JM, The mathematics of second quantization, Proc. Nat. Acad. Sci. U. S. A., 37, 417-420, 1951 · Zbl 0045.28202 · doi:10.1073/pnas.37.7.417
[17] Dereziński, J., Van Hove Hamiltonians—exactly solvable models of the infrared and ultraviolet problem, Ann. Henri Poincaré, 4, 4, 713-738, 2003 · Zbl 1069.81533 · doi:10.1007/s00023-003-0145-5
[18] Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2013). ISBN 978-1-107-01111-3, xii+674pp. · Zbl 1271.81004
[19] Falconi, M.: Classical limit of the Nelson model with cutoff. J. Math. Phys. 54(1), 012303 (2013). doi:10.1063/1.4775716. arXiv:1205.4367 · Zbl 1280.81159
[20] Falconi, M.: Self-adjointness criterion for operators in Fock spaces. Math. Phys. Anal. Geom. 18(1), Art. 2 (2015). arXiv:1405.6570 · Zbl 1337.47033
[21] Falconi, M.: Cylindrical Wigner measures. Doc. Math. 23, 1677-1756 (2018). doi:10.25537/dm.2018v23.1677-1756. arXiv:1605.04778 · Zbl 1419.81025
[22] Hasler, D.; Herbst, I., Ground states in the spin boson model, Ann. Henri Poincaré, 12, 4, 621-677, 2011 · Zbl 1222.81160 · doi:10.1007/s00023-011-0091-6
[23] Joye, A.; Merkli, M.; Spehner, D., Adiabatic transitions in a two-level system coupled to a free boson reservoir, Ann. Henri Poincaré, 21, 10, 3157-3199, 2020 · Zbl 1448.81474 · doi:10.1007/s00023-020-00946-w
[24] Könenberg, M.; Merkli, M., On the irreversible dynamics emerging from quantum resonances, J. Math. Phys., 57, 3, 033,302, 2016 · Zbl 1342.81134 · doi:10.1063/1.4944614
[25] Könenberg, M.; Merkli, M.; Song, H., Ergodicity of the spin-boson model for arbitrary coupling strength, Commun. Math. Phys., 336, 1, 261-285, 2015 · Zbl 1311.81255 · doi:10.1007/s00220-014-2242-3
[26] Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1-85 (1987). http://dx.doi.org/10.1103/RevModPhys.59.1. Erratum: Rev. Mod. Phys. 67(1), 725 (1995)
[27] Lonigro, D., Generalized spin-boson models with non-normalizable form factors, J. Math. Phys., 63, 7, 072,105, 2022 · Zbl 1509.81629 · doi:10.1063/5.0085576
[28] Lions, P-L; Paul, T., Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9, 3, 553-618, 1993 · Zbl 0801.35117 · doi:10.4171/RMI/143
[29] Merkli, M., Quantum markovian master equations: resonance theory shows validity for all time scales, Ann. Phys., 412, 167,996, 2020 · Zbl 1432.81047 · doi:10.1016/j.aop.2019.167996
[30] Merkli, M., Dynamics of open quantum systems i, oscillation and decay, Quantum, 6, 615, 2022 · doi:10.22331/q-2022-01-03-615
[31] Merkli, M., Dynamics of open quantum systems ii, markovian approximation, Quantum, 6, 616, 2022 · doi:10.22331/q-2022-01-03-616
[32] Merkli, M.; Sigal, IM; Berman, GP, Decoherence and thermalization, Phys. Rev. Lett., 98, 13, 130401, 2007 · Zbl 1228.82060 · doi:10.1103/PhysRevLett.98.130401
[33] Merkli, M.; Berman, GP; Borgonovi, F.; Gebresellasie, K., Evolution of entanglement of two qubits interacting through local and collective environments, Quant. Inf. Comput., 11, 5-6, 390-419, 2011 · Zbl 1238.81032
[34] Merkli, M.; Berman, GP; Sayre, R., Electron transfer reactions: generalized spin-boson approach, J. Math. Chem., 51, 3, 890-913, 2013 · Zbl 1402.92459 · doi:10.1007/s10910-012-0124-5
[35] Merkli, M.; Berman, GP; Sayre, RT; Gnanakaran, S.; Könenberg, M.; Nesterov, AI; Song, H., Dynamics of a chlorophyll dimer in collective and local thermal environments, J. Math. Chem., 54, 4, 866-917, 2016 · Zbl 1356.81236 · doi:10.1007/s10910-016-0593-z
[36] Mohseni, M.; Omar, Y.; Engel, GS; Plenio, MB, Quantum Effects in Biology, 2014, Cambridge: Cambridge University Press, Cambridge
[37] Palma, GM; Suominen, KA; Ekert, AK, Quantum computers and dissipation, Proc. Roy. Soc. Lond. Ser. A, 452, 1946, 567-584, 1996 · Zbl 0870.68066 · doi:10.1098/rspa.1996.0029
[38] Segal, IE, Foundations of the theory of dynamical systems of infinitely many degrees of freedom, I. Mat.-Fys. Medd. Danske Vid. Selsk., 31, 12, 39pp, 1959 · Zbl 0085.21806
[39] Segal, IE, Foundations of the theory of dyamical systems of infinitely many degrees of freedom, II. Can. J. Math., 13, 1-18, 1961 · Zbl 0098.22104 · doi:10.4153/CJM-1961-001-7
[40] Xu, D.; Schulten, K., Coupling of protein motion to electron transfer in a photosynthetic reaction center: investigating the low temperature behavior in the framework of the spin—boson model, Chem. Phys., 182, 2, 91-117, 1994 · doi:10.1016/0301-0104(94)00016-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.