×

Sample and realized minimum variance portfolios: estimation, statistical inference, and tests. (English) Zbl 07910980


MSC:

62-08 Computational methods for problems pertaining to statistics

References:

[1] Barndorff‐Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2011). Multivariate realised kernels: Consistent positive semi‐definite estimators of the covariation of equity prices with noise and non‐synchronous trading. Journal of Econometrics, 162, 149-169. · Zbl 1441.62599
[2] Barndorff‐Nielsen, O. E., & Shephard, N. (2004). Econometric analysis of realised covariation: High frequency covariance, regression and correlation in financial economics. Econometrica, 72, 885-925. · Zbl 1141.91634
[3] Basak, G. K., Jagannathan, R., & Ma, T. (2009). Jackknife estimator of tracking error variance of optimal portfolios. Management Science, 55, 990-1002. · Zbl 1232.91644
[4] Bauder, D., Bodnar, R., Bodnar, T., & Schmid, W. (2019). Bayesian estimation of the efficient frontier. Scandinavian Journal of Statistics, 46, 802-830. · Zbl 1433.62085
[5] Bauwens, L., Braione, M., & Storti, G. (2017). A dynamic component model for forecasting high‐dimensional realized covariance matrices. Econometrics and Statistics, 1, 40-61.
[6] Bauwens, L., Laurent, S., & Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey. Journal of Applied Econometrics, 21, 79-109.
[7] Best, M., & Grauer, R. (1991). On the sensitivity of mean-variance-efficient portfolios to changes in asset means: Some analytical and computational results. Review of Financial Studies, 4, 315-342.
[8] Bodnar, T., Dmytriv, S., Parolya, N., & Schmid, W. (2019). Tests for the weights of the global minimum variance portfolio in a high‐dimensional setting. IEEE Transactions on Signal Processing, 67, 4479-4493. · Zbl 07123374
[9] Bodnar, T., Gupta, A. K., & Parolya, N. (2014). On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix. Journal of Multivariate Analysis, 132, 215-228. · Zbl 1333.60047
[10] Bodnar, T., Gupta, A. K., & Parolya, N. (2016). Direct shrinkage estimation of large dimensional precision matrix. Journal of Multivariate Analysis, 146, 223-236. · Zbl 1338.60012
[11] Bodnar, T., Mazur, S., & Okhrin, Y. (2017). Bayesian estimation of the global minimum variance portfolio. European Journal of Operational Research, 256, 292-307. · Zbl 1395.91395
[12] Bodnar, T., Mazur, S., & Podgorski, Y. (2016). Singular inverse Wishart distribution and its application to portfolio theory. Journal of Multivariate Analysis, 143, 314-326. · Zbl 1328.62313
[13] Bodnar, T., & Okhrin, Y. (2013). Boundaries of the risk aversion coefficient: Should we invest in the global minimum variance portfolio. Applied Mathematics and Computation, 219, 5440-5448. · Zbl 1280.91145
[14] Bodnar, T., Parolya, N., & Schmid, W. (2018). Estimation of the global minimum variance portfolio in high dimensions. European Journal of Operational Research, 266, 371-390. · Zbl 1403.91307
[15] Bodnar, T., & Schmid, W. (2008). A test for the weights of the global minimum variance portfolio in an elliptical model. Metrika, 67, 127-143. · Zbl 1433.91150
[16] Bodnar, T., Schmid, W., & Zabolotskyy, T. (2013). Asymptotic behavior of the estimated weights and of the estimated performance measures of the minimum VaR and the minimum CVaR optimal portfolios for dependent data. Metrika, 76(8), 1105-1134. · Zbl 1365.62401
[17] Bollerslev, T., Meddahi, N., & Nyawa, S. (2019). High‐dimensional multivariate realized volatility estimation. Journal of Econometrics, 212, 116-136. · Zbl 1452.62745
[18] Boudt, K., Laurent, S., Lunde, A., Quaedvlieg, R., & Sauri, O. (2017). Positive semidefinite integrated covariance estimation, factorisations and asynchronicity. Journal of Econometrics, 196, 347-367. · Zbl 1403.62095
[19] Brodie, J., Daubechies, I., De Mol, C., Gionnone, D., & Loris, I. (2009). Sparse and stable Markowitz portfolios. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12267-12272. · Zbl 1203.91271
[20] Cai, T. T., Hu, J., Li, Y., & Zheng, X. (2020). High‐dimensional minimum variance portfolio estimation based on high‐frequency data. Journal of Econometrics, 214, 482-494. · Zbl 1456.62242
[21] Callot, L. A., Kock, A. B., & Medeiros, M. C. (2017). Modeling and forecasting large realized covariance matrices and portfolio choice. Journal of Applied Econometrics, 32, 140-158.
[22] Campbell, J. Y., Lo, A. W., & MacKinley, A. C. (1997). Econometrics of financial markets. New Jersey: Princeton University Press. · Zbl 0927.62113
[23] Candelon, B., Hurlin, C., & Tokpavi, S. (2012). Sampling error and double shrinkage estimation of minimum variance portfolios. Journal of Empirical Finance, 19, 511-527.
[24] Chen, Y., Wiesel, A., Eldar, Y. C., & Hero, A. O. (2010). Shrinkage algorithms for MMSE covariance estimation. IEEE Transactions on Signal Processing, 58, 5016-5029. · Zbl 1392.94142
[25] Chiriac, R., & Voev, V. (2011). Modelling and forecasting multivariate realized volatility. Journal of Applied Econometrics, 26, 922-947.
[26] Corsi, F. (2009). A simple approximative long‐memory model of realized volatility. Journal of Financial Econometrics, 7, 174-196.
[27] Dacorogna, M. M., Gencay, R., Müller, U., Olsen, R. B., & Pictet, O. V. (2001). An introduction to high frequency finance. San Diego, IL: Academic Press.
[28] DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?Review of Financial Studies, 22, 1915-1953.
[29] Ding, Y., Li, Y., & Zheng, X. (2020). High dimensional minimum variance portfolio estimation under statistical factor models. Journal of Econometrics, 222, 502-515. · Zbl 1471.62493
[30] Engle, R. F. (2002). Dynamic conditional correlation—A simple class of multivariate GARCH models. Journal of Business and Economic Statistics, 20, 339-350.
[31] Engle, R. F., & Kelly, B. (2012). Dynamic equicorrelation. Journal of Business and Economic Statistics, 30, 212-228.
[32] Engle, R. F., & Kroner, F. K. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory, 11, 122-150.
[33] Engle, R. F., Ledoit, O., & Wolf, M. (2019). Large dynamic covariance matrices. Journal of Business and Economic Statistics, 37, 363-375.
[34] Fan, J., Fan, Y., & Lv, J. (2008). High dimensional covariance matrix estimation using a factor model. Journal of Econometrics, 147, 186-197. · Zbl 1429.62185
[35] Fan, J., Furger, A., & Xiu, D. (2016). Incorporating global industrial classification standard into portfolio allocation: A simple factor‐based large covariance matrix estimator with high‐frequency data. Journal of Business and Economic Statistics, 34, 489-503.
[36] Fan, J., Li, Y., & Yu, K. (2012). Vast volatility matrix estimation using high frequency data for portfolio selection. Journal of American Statistical Association, 107, 412-428. · Zbl 1328.91266
[37] Fan, J., Liao, Y., & Mincheva, M. (2011). High‐dimensional covariance matrix estimation in approximate factor models. Annals of Statistics, 39, 3320-3356. · Zbl 1246.62151
[38] Fleming, J., Kirby, C., & Ostdiek, B. (2003). The economic value of volatility timing using realized volatility. Journal of Financial Economics, 67, 473-509.
[39] Frahm, G. (2010). Linear statistical inference for global and local minimum variance portfolios. Statistical Papers, 51(4), 789-812. · Zbl 1247.91171
[40] Frahm, G. (2015). A theoretical foundation of portfolio resampling. Theory and Decision, 79, 107-132. · Zbl 1377.91149
[41] Frahm, G., & Memmel, C. (2010). Dominating estimators for minimum-variance portfolios. Journal of Econometrics, 159, 289-302. · Zbl 1441.62264
[42] Glombek, K. (2015). Statistical inference for high‐dimensional global minimum variance portfolios. Scandinavian Journal of Statistics, 41(4), 845-865. · Zbl 1305.91220
[43] Golosnoy, V., Gribisch, B., & Liesenfeld, R. (2012). The conditional autoregressive Wishart model for multivariate stock market volatility. Journal of Econometrics, 167, 211-223. · Zbl 1441.62705
[44] Golosnoy, V., Gribisch, B., & Seifert, M. I. (2019). Exponential smoothing of realized portfolio weights. Journal of Empirical Finance, 53, 222-237.
[45] Golosnoy, V., & Okhrin, Y. (2007). Multivariate shrinkage for optimal portfolio weights. European Journal of Finance, 13, 441-458.
[46] Golosnoy, V., & Okhrin, Y. (2008). Modelling uncertainty in portfolio selection: A case based decision approach. Journal of Economic Behavior and Organization, 67, 718-734.
[47] Golosnoy, V., & Okhrin, Y. (2009). Flexible shrinkage in portfolio selection. Journal of Economic Dynamics and Control, 33, 317-328. · Zbl 1170.91412
[48] Golosnoy, V., & Parolya, N. (2017). Portfolio choice for cooperating mean‐variance savers. Quantitative Finance, 15, 1055-1073.
[49] Golosnoy, V., Ragulin, S., & Schmid, W. (2011). CUSUM control charts for monitoring optimal portfolio weights. Computational Statistics and Data Analysis, 55, 2991-3009. · Zbl 1218.62137
[50] Golosnoy, V., Schmid, W., Seifert, M. I., & Lazariv, T. (2020). Statistical inferences for realized portfolio weights. Econometrics and Statistics, 14, 49-62.
[51] Gorgi, P., Hansen, P. R., Janus, P., & Koopman, S. J. (2019). Realized Wishart‐GARCH: A score‐driven multi‐asset volatility model. Journal of Financial Econometrics, 17, 1-32.
[52] Gribisch, B. (2017). A latent dynamic factor approach to forecasting multivariate stock market volatility. Empirical Economics, 55, 1-31.
[53] Gribisch, B., Hartkopf, J. P., & Liesenfeld, R. (2020). Factor state‐space models for high‐dimensional realized covariance matrices of asset returns. Journal of Empirical Finance, 55, 1-20.
[54] Gribisch, B., & Stollenwerk, M. (2020). Dynamic principal component CAW models for high‐dimensional realized covariance matrices. Quantitative Finance, 20, 799-821. · Zbl 1467.62174
[55] Hautsch, N., Kyi, L., & Malec, P. (2015). Do high‐frequency data improve high‐dimensional portfolio allocations?Journal of Applied Econometrics, 30, 263-290.
[56] Jagannathan, R., & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. Journal of Finance, 58, 1651-1683.
[57] Jin, X., & Maheu, J. M. (2013). Modelling realized covariances and returns. Journal of Financial Econometrics, 11, 335-369.
[58] Jobson, J. D., & Korkie, B. (1980). Estimation of Markowitz efficient portfolios. Journal of the American Statistical Association, 75, 544-554. · Zbl 0446.62047
[59] Kan, R., & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial and Quantitative Analysis, 42, 621-656.
[60] Klein, R., & Bawa, V. (1976). The effect of estimation risk on optimal portfolio choice. Journal of Financial Economics, 3, 215-231.
[61] Klüppelberg, C., & Seifert, M. I. (2019). Financial risk measures for a network of individual agents holding portfolios of light‐tailed objects. Finance and Stochastics, 23(4), 795-826. · Zbl 1426.91306
[62] Klüppelberg, C., & Seifert, M. I. (2020). Explicit results on conditional distributions of generalized exponential mixtures. Journal of Applied Probability, 57(3), 760-774. · Zbl 1454.62066
[63] Lam, C. (2019). High‐dimensional covariance matrix estimation. WIREs Computational Statistics, 12(2). e1485. https://doi.org/10.1002/wics.1485 · Zbl 07909786 · doi:10.1002/wics.1485
[64] Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10, 603-621.
[65] Ledoit, O., & Wolf, M. (2004). A well‐conditioned estimator for large‐dimensional covariance matrices. Journal of Multivariate Analysis, 88, 365-411. · Zbl 1032.62050
[66] Ledoit, O., & Wolf, M. (2012). Nonlinear shrinkage estimation of large‐dimensional covariance matrices. Annals of Statistics, 40, 1024-1060. · Zbl 1274.62371
[67] Lunde, A., Shephard, N., & Sheppard, K. (2016). Econometric analysis of vast covariance matrices using composite realized kernels and their application to portfolio choice. Journal of Business and Economic Statistics, 34, 504-518.
[68] Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77-91.
[69] Merton, R. C. (1980). On estimating the expected return on the market: An exploratory investigation. Journal of Financial Economics, 8, 323-361.
[70] Moreira, A., & Muir, T. (2017). Volatility managed portfolios. Journal of Finance, 72, 1611-1644.
[71] Moura, G. V., Santos, A. A. P., & Ruiz, E. (2020). Comparing high‐dimensional conditional covariance matrices: Implications for portfolio selection. Journal of Banking and Finance, 118, 105882.
[72] Muirhead, R. J. (1982). Aspects of multivariate statistical theory. New Jersey: Wiley. · Zbl 0556.62028
[73] Okhrin, Y., & Schmid, W. (2006). Distributional properties of optimal portfolio weights. Journal of Econometrics, 134, 235-256. · Zbl 1420.91430
[74] Sheppard, K., & Xu, W. (2019). Factor high‐frequency‐based volatility (HEAVY) models. Journal of Financial Econometrics, 17, 33-65.
[75] Stein, C. (1955). Inadmissability of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of 3rd Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, pp. 197-206). University of California Press. · Zbl 0073.35602
[76] Tong, J., Hu, R., Xi, J., Xiao, Z., Guo, Q., & Yu, Y. (2018). Linear shrinkage estimation of covariance matrices using low‐complexity cross‐validation. Signal Processing, 148, 223-233.
[77] Tu, J., & Zhou, G. (2011). Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies. Journal of Financial Economics, 99, 204-215.
[78] Wang, Z. (2005). A shrinkage approach to model uncertainty and asset allocation. Review of Financial Studies, 18, 673-705.
[79] Wied, D., Ziggel, D., & Berens, T. (2013). On the application of new tests for structural changes on global minimum‐variance portfolios. Statistical Papers, 54, 955-975. · Zbl 1294.62239
[80] Wojciechowski, W. C., & Thompson, J. R. (2006). Market truths: Theory versus empirical simulations. Journal of Statistical Computation and Simulation, 76, 385-395. · Zbl 1089.62124
[81] Zhang, M., Rubio, F., & Palomar, D. P. (2012). Improved calibration of high‐dimensional precision matrices. IEEE Transactions on Signal Processing, 61, 1509-1519. · Zbl 1393.94520
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.