×

Renormalization of bi-cubic circle maps. (English. French summary) Zbl 07908820

Summary: We develop a renormalization theory for analytic homeomorphisms of the circle with two cubic critical points. We prove a renormalization hyperbolicity theorem. As a basis for the proofs, we develop complex a priori bounds for multi-critical circle maps.

MSC:

37E10 Dynamical systems involving maps of the circle
37E20 Universality and renormalization of dynamical systems
37F25 Renormalization of holomorphic dynamical systems

References:

[1] L. Bers and H. L. Royden, Holomorphic families of injections, Acta Math. 157, 259-286. · Zbl 0619.30027
[2] Edson de Faria, Asymptotic rigidity of scaling ratios for critical circle mappings, Ergodic Theory Dynam. Systems 19 (1999), no. 4, 995-1035. · Zbl 0996.37045
[3] E. de Faria and W. de Melo, Rigidity of critical circle mappings II, J. Amer. Math. Soc. (JAMS) 13 (2000), no. 2, 343-370. · Zbl 0988.37048
[4] G. Estevez, E. de Faria, and P. Guarino, Beau bounds for multicritical circle maps, e-print ArXiv (2016).
[5] M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker, Quasiperiodicity in dissipative systems: a renormalization group analysis, Phys. D 5 (1982), no. 2-3, 370-386.
[6] P. Guarino and E. de Faria, Quasisymmetric orbit-flexibility of multicritical circle maps, in preparation. · Zbl 1508.37052
[7] I. Gorbovickis and M. Yampolsky, Rigidity, universality,and hyperbolicity of renormalization for critical circle maps with non-integer exponents, Erg. Th. and Dyn. Sys. (2018).
[8] M. Herman, Conjugaison quasi symétrique des homéomorphismes du cercleà des rotations, and Conjugaison quasi symétrique des difféomorphismes du cercleà des rotations et applications aux disques singuliers de Siegel, available from http://www.math.kyoto-u.ac.jp/∼mitsu/Herman/index.html, 1986.
[9] J. Milnor, Dynamics in one complex variable. Introductory lectures, 3rd ed., Princeton University Press, 2006. · Zbl 1085.30002
[10] R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci.École Norm. Sup. (4) 16 (1983), no. 2, 193-217. · Zbl 0524.58025
[11] StellanÖstlund, David Rand, James Sethna, and Eric Siggia, Universal properties of the transition from quasiperiodicity to chaos in dissipative systems, Phys. D 8 (1983), no. 3, 303-342. · Zbl 0538.58025
[12] Dennis Sullivan, Bounds, quadratic differentials, and renormalization conjectures, American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988), Amer. Math. Soc., Providence, RI, 1992, pp. 417-466. · Zbl 0936.37016
[13] S.E. Warschawski, On the degree of variation in conformal mapping of variable regions, Trans. of the AMS 69 (1950), no. 2, 335-356. · Zbl 0041.05102
[14] M. Yampolsky, Complex bounds for renormalization of critical circle maps, Erg. Th. & Dyn. Systems 19 (1999), 227-257. · Zbl 0918.58049
[15] M Yampolsky, Hyperbolicity of renormalization of critical circle maps, Publ. Math. Inst. HautesÉtudes Sci. 96 (2002), 1-41. · Zbl 1030.37027
[16] M. Yampolsky, Global renormalization horseshoe for critical circle maps, Commun. Math. Phys. 240 (2003), 75-96. · Zbl 1078.37034
[17] J.-C. Yoccoz, Il n’y a pas de contre-exemple de Denjoy analytique, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 7, 141-144. · Zbl 0573.58023
[18] S. Zakeri, Dynamics of cubic Siegel polynomials, Communications in Mathematical Physics 206 (1999), no. 1, 185-233. · Zbl 0936.37019
[19] Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4 e-mail: yampol@math.toronto.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.