×

Event-triggered adaptive fault-tolerant bounded control for a class of non-strict feedback nonlinear systems with input quantization. (English) Zbl 07898155

Summary: The issue of event-triggered adaptive fault-tolerant control (FTC) for a class of non-strict feedback nonlinear systems (NSs) with input quantization, and sensor and actuator faults (SAAF) is investigated in this paper, where SAAF can be both additive and multiplicative. By using backstepping method with fuzzy logic systems (FLSs), an event-triggered adaptive fault-tolerant controller is proposed. Accordingly, the event-triggered scheme and the quantization control are employed to change the signal transmission and alleviate the transmission burden. One feature of the proposed controller is that the control signal is bounded with a known bound in advance which can be ensured via tuning feedback control gains. Asymptotical stability analysis of the closed-loop systems is established. Furthermore, when the considered system subjects to additive and multiplicative sensor faults simultaneously, all the system states are bounded; in this situation the system output can converge to zero with multiplicative sensor faults. Finally, a single-link manipulator system is considered to illustrate the proposed control method and verity its effectiveness.

MSC:

93C40 Adaptive control/observation systems
93C42 Fuzzy control/observation systems
93C10 Nonlinear systems in control theory
93B52 Feedback control
Full Text: DOI

References:

[1] Shen, H.; Xing, M. P.; Wu, Z. G.; Park, Ju H., Fault-tolerant control for fuzzy switched singular systems with persistent dwell-time subject to actuator fault, Fuzzy Sets Syst., 392, 60-76 (2020) · Zbl 1452.93020
[2] Xiao, S. Y.; Dong, J. X., Adaptive fault-tolerant control for a class of uncertain t-s fuzzy systems with guaranteed time-varying performance, Fuzzy Sets Syst., 385, 1-19 (2020) · Zbl 1465.93129
[3] Zhao, L.; Yang, G. H., Fuzzy adaptive fault-tolerant control of multi-agent systems with interactions between physical coupling graph and communication graph, Fuzzy Sets Syst., 385, 20-38 (2020) · Zbl 1465.93131
[4] Chen, J.; Patton, R. J., Robust Model-Based Fault Diagnosis for Dynamic Systems (1999), Kulwer Academic Publishers: Kulwer Academic Publishers Boston · Zbl 0920.93001
[5] Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M., Diagnosis and Fault Tolerant Control (2003), Springer-Verlag: Springer-Verlag Berlin · Zbl 1023.93001
[6] Ye, D.; Yang, G. H., Adaptive fault-tolerant tracking control against actuator faults with application to flight control, IEEE Trans. Control Syst. Technol., 14, 6, 1088-1096 (2006)
[7] Zhang, L.; Yang, G., Fault-estimation-based output-feedback adaptive FTC for uncertain nonlinear systems with actuator faults, IEEE Trans. Ind. Electron., 67, 4, 3065-3075 (2020)
[8] Yang, G.; Ye, D., Adaptive fault-tolerant \(H_\infty\) control against sensor failures, IET Control Theory Appl., 2, 2, 95-107 (2008)
[9] Zhang, L. L.; Yang, G. H., Observer-based fuzzy adaptive sensor fault compensation for uncertain nonlinear strict-feedback systems, IEEE Trans. Fuzzy Syst., 26, 4, 2301-2310 (2018)
[10] Yin, S.; Yang, H.; Kaynak, O., Sliding mode observer-based FTC for Markovian jump systems with actuator and sensor faults, IEEE Trans. Autom. Control, 62, 7, 3551-3558 (2017) · Zbl 1370.93248
[11] Yu, X. H.; Wang, T.; Gao, H. J., Adaptive neural fault-tolerant control for a class of strict-feedback nonlinear systems with actuator and sensor faults, Neurocomputing, 380, 87-94 (2020)
[12] Dixon, W. E.; de Queiroz, M. S.; Zhang, F.; Dawson, D. M., Tracking control of robot manipulators with bounded torque inputs, Robotica, 17, 2, 121-129 (1999)
[13] Mazenc, F.; Iggidr, A., Backstepping with bounded feedbacks, Syst. Control Lett., 51, 3-4, 235-245 (2004) · Zbl 1157.93489
[14] Fischer, N.; Dani, A.; Sharma, N.; Dixon, W. E., Saturated control of an uncertain nonlinear system with input delay, Automatica, 49, 6, 1741-1747 (2013) · Zbl 1360.93495
[15] Li, Y. M.; Tong, S. C.; Li, T. S., Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation, IEEE Trans. Cybern., 45, 10, 2299-2308 (2015)
[16] Li, Y. M.; Tong, S. C.; Li, T. S., Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation, IEEE Trans. Fuzzy Syst., 24, 4, 841-853 (2016)
[17] Li, H. Y.; Bai, L.; Wang, L. J.; Zhou, Q.; Wang, H. Q., Adaptive neural control of uncertain nonstrict-feedback stochastic nonlinear systems with output constraint and unknown dead zone, IEEE Trans. Syst. Man Cybern. Syst., 47, 8, 2048-2059 (2017)
[18] Zhou, Q.; Li, H. Y.; Wu, C. W.; Wang, L. J.; Ahn, C. K., Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach, IEEE Trans. Syst. Man Cybern. Syst., 47, 8, 1979-1989 (2017)
[19] Liu, Y. J.; Tong, S. C.; Chen, C. L.P.; Li, D. J., Neural controller design-based adaptive control for nonlinear MIMO systems with unknown hysteresis inputs, IEEE Trans. Cybern., 46, 1, 9-19 (2016)
[20] Lu, P., Tracking control of nonlinear systems with bounded controls and control rates, Automatica, 33, 6, 1199-1202 (1997) · Zbl 0879.93020
[21] Fan, J. H.; Zhang, Y. M.; Zheng, Z. Q., Robust fault-tolerant control against time-varying actuator faults and saturation, IET Control Theory Appl., 6, 14, 2198-2208 (2012)
[22] Smaeilzadeh, S. M.; Golestani, M., Finite-time fault-tolerant adaptive robust control for a class of uncertain non-linear systems with saturation constraints using integral backstepping approach, IET Control Theory Appl., 12, 15, 2109-2117 (2018)
[23] Aouaouda, S.; Chadli, M., Robust fault tolerant controller design for Takagi-Sugeno systems under input saturation, Int. J. Syst. Sci., 50, 6, 1163-1178 (2019) · Zbl 1483.93092
[24] Gao, H. J.; Chen, T. W., A new approach to quantized feedback control systems, Automatica, 44, 2, 534-542 (2008) · Zbl 1283.93131
[25] Miller, R. K.; Michel, A. N.; Farrell, J. A., Quantizer effects on steady-state error specifications of digital feedback control systems, IEEE Trans. Autom. Control, 34, 6, 651-654 (1989) · Zbl 0682.93021
[26] Tatikonda, S.; Mitter, S., Control under communication constraints, IEEE Trans. Autom. Control, 49, 7, 1056-1068 (2004) · Zbl 1365.93271
[27] Wong, W. S.; Brockett, R. W., Systems with finite communication bandwidth constraints. ii. stabilization with limited information feedback, IEEE Trans. Autom. Control, 44, 5, 1049-1053 (1999) · Zbl 1136.93429
[28] Liu, T. F.; Jiang, Z. P.; Hill, D., A sector bouned approach to feedback control of nonlinear systems with state quantization, Automatica, 48, 1, 145-152 (2012) · Zbl 1244.93066
[29] Sun, H. B.; Hou, L. L.; Zong, G. D.; Yu, X. H., Fixed-time attitude tracking control for spacecraft with input quantization, IEEE Trans. Aerosp. Electron. Syst., 55, 1, 124-134 (2019)
[30] Hou, L. L.; Sun, H. B., Anti-disturbance attitude control of flexible spacecraft with quantized states, Aerosp. Sci. Technol., 99, Article 105760 pp. (2020)
[31] Li, Y. X.; Yang, G. H., Observer-based adaptive fuzzy quantized control of uncertain nonlinear systems with unknown control directions, Fuzzy Sets Syst., 371, 61-77 (2019) · Zbl 1423.93202
[32] Sun, H. B.; Hou, L. L.; Zong, G. D.; Yu, X. H., Adaptive decentralized neural network tracking control for uncertain interconnected nonlinear systems with input quantization and time delay, IEEE Trans. Neural Netw. Learn. Syst., 31, 4, 1401-1409 (2020)
[33] Zhou, J.; Wen, C. Y.; Yang, G. H., Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal, IEEE Trans. Autom. Control, 59, 2, 460-464 (2014) · Zbl 1360.93626
[34] Xing, L. T.; Wen, C. Y.; Zhu, Y.; Su, H. Y.; Liu, Z. T., Output feedback control for uncertain nonlinear systems with input quantization, Automatica, 65, 191-202 (2016) · Zbl 1328.93148
[35] Li, Y. X.; Yang, G. H., Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults, Automatica, 72, 177-185 (2016) · Zbl 1344.93061
[36] Liu, T. F.; Jiang, Z. P., Event-based control of nonlinear systems with partial state and output feedback, Automatica, 53, 10-22 (2015) · Zbl 1371.93128
[37] Xing, L.; Wen, C.; Liu, Z.; Su, H.; Cai, J., Event-triggered output feedback control for a class of uncertain nonlinear systems, IEEE Trans. Autom. Control, 64, 1, 290-297 (2019) · Zbl 1423.93341
[38] Zong, G.; Ren, H.; Karimi, H. R., Event-triggered communication and annular finite-time \(H_\infty\) filtering for networked switched systems, IEEE Trans. Cybern. (2020)
[39] Ren, H.; Zong, G.; Karimi, H. R., Asynchronous finite-time filtering of networked switched systems and its application: an event-driven method, IEEE Trans. Circuits Syst. I, Regul. Pap., 66, 1, 391-402 (2019) · Zbl 1468.93156
[40] Xing, L.; Wen, C.; Liu, Z.; Su, H.; Cai, J., Event-triggered adaptive control for a class of uncertain nonlinear systems, IEEE Trans. Autom. Control, 62, 4, 2071-2076 (2017) · Zbl 1366.93305
[41] Li, Y. X.; Hu, X. Y.; Che, W. W.; Hou, Z. S., Event-based adaptive fuzzy asymptotic tracking control of uncertain nonlinear systems, IEEE Trans. Fuzzy Syst. (2020)
[42] Wang, X. D.; Fei, Z. Y.; Yu, J. Y.; Du, Z. W., Passivity-based event-triggered fault tolerant control for VTOL with actuator failure and parameter uncertainties, Int. J. Syst. Sci., 50, 4, 817-828 (2019) · Zbl 1482.93395
[43] Pan, H.; Zhang, D.; Sun, W.; Yu, X., Event-triggered adaptive asymptotic tracking control of uncertain mimo nonlinear systems with actuator faults, IEEE Trans. Cybern., 1-13 (2021)
[44] Cao, L.; Li, H.; Dong, G.; Lu, R., Event-triggered control for multiagent systems with sensor faults and input saturation, IEEE Trans. Syst. Man Cybern. Syst., 1-12 (2019)
[45] Zhang, J.; Li, S.; Xiang, Z. R., Adaptive fuzzy output feedback event-triggered control for a class of switched nonlinear systems with sensor failures, IEEE Trans. Circuits Syst. I, Regul. Pap., 67, 12, 5336-5346 (2020) · Zbl 1468.93105
[46] Shi, P.; Wang, H. J.; Lim, C. C., Network-based event-triggered control for singular systems with quantizations, IEEE Trans. Ind. Electron., 63, 2, 1230-1238 (2016)
[47] Abdelrahim, M.; Dolk, V. S.; Heemels, W. P.M. H., Event-triggered quantized control for input-to-state stabilization of linear systems with distributed output sensors, IEEE Trans. Autom. Control, 64, 12, 4952-4967 (2019) · Zbl 1482.93369
[48] Liu, T. F.; Jiang, Z. P., Event-triggered control of nonlinear systems with state quantization, IEEE Trans. Autom. Control, 64, 2, 797-803 (2018) · Zbl 1482.93370
[49] Wu, C. Y.; Zhao, X. D.; Xia, W. G.; Liu, J.; Başar, T., \( L_2\)-gain analysis for dynamic event-triggered networked control systems with packet losses and quantization, Automatica, 129, Article 109587 pp. (2021) · Zbl 1482.93397
[50] Ma, Y. J.; Li, Z. J.; Zhao, J., \( H_\infty\) control for switched systems based on dynamic event-triggered strategy and quantization under state-dependent switching, IEEE Trans. Circuits Syst. I, Regul. Pap., 67, 9, 3175-3186 (2020) · Zbl 1468.93069
[51] Wang, C. C.; Yang, G. H., Event-triggered decentralized output-feedback control for interconnected nonlinear systems with input quantization, J. Franklin Inst., 356, 7028-7048 (2019) · Zbl 1418.93101
[52] Xing, X. Y.; Liu, J. K., Event-triggered neural network control for a class of uncertain nonlinear systems with input quantization, Neurocomputing, 440, 240-250 (2021)
[53] Wang, C. L.; Wen, C. Y.; Lin, Y.; Wang, W., Decentralized adaptive tracking control for a class of interconnected nonlinear systems with input quantization, Automatica, 81, 359-368 (2017) · Zbl 1372.93030
[54] Wang, W.; Wen, C. Y., Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance, Automatica, 46, 12, 2082-2091 (2010) · Zbl 1205.93083
[55] Wang, W.; Wen, C. Y., Adaptive compensation for infinite number of actuator failures or faults, Automatica, 47, 10, 2197-2210 (2011) · Zbl 1228.93070
[56] Shen, D.; Mu, Y.; Xiong, G., Iterative learning control for non-linear systems with deadzone input and time delay in presence of measurement noise, IET Control Theory Appl., 5, 12, 1418-1425 (2011)
[57] Sun, J.; Pu, Z.; Yi, J.; Liu, Z., Fixed-time control with uncertainty and measurement noise suppression for hypersonic vehicles via augmented sliding mode observers, IEEE Trans. Ind. Inform., 16, 2, 1192-1203 (2020)
[58] Jin, X., Adaptive fault tolerant control for a class of multi-input multi-output nonlinear systems with both sensor and actuator faults, Int. J. Adapt. Control Signal Process., 31, 10, 1418-1427 (2017) · Zbl 1376.93034
[59] Zuo, Z. Y.; Wang, C. L., Adaptive trajectory tracking control of output constrained multi-rotors systems, IET Control Theory Appl., 8, 1163-1174 (2014)
[60] Cai, Z.; de Queiroz, M. S.; Dawson, D. M., A sufficiently smooth projection operator, IEEE Trans. Autom. Control, 51, 1, 135-139 (2006) · Zbl 1366.93283
[61] Zhou, J.; Wen, C. Y.; Wang, W., Adaptive control of uncertain nonlinear systems with quantized input signal, Automatica, 95, 152-162 (2018) · Zbl 1402.93163
[62] Wang, L. X.; Mendel, J. M., Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Trans. Neural Netw., 3, 5, 807-814 (Sep. 1992)
[63] Dawson, D. M.; Carroll, J. J.; Schneider, M., Integrator backstepping control of a brush dc motor turning a robotic load, IEEE Trans. Control Syst. Technol., 2, 3 (1994)
[64] Chen, W. S.; Jiao, L. C.; Li, J.; Li, R. H., Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 40, 3, 939-950 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.