×

Roles of density-related diffusion and signal-dependent motilities in a chemotaxis-consumption system. (English) Zbl 07897399

Summary: This study examines an initial-boundary value problem involving the system \[ \begin{cases} u_t = \Delta(u^m\phi(v)), \\ v_t = \Delta v - uv. \end{cases}\tag{\(\star\)} \] in a smoothly bounded domain \(\Omega\subset\mathbb{R}^n\) with no-flux boundary conditions, where \(m, n \geq 1\). The motility function \(\phi\in C^0([0, \infty))\cap C^3((0, \infty))\) is positive on \((0, \infty)\) and satisfies \[ \liminf_{\xi\searrow0} \frac{\phi(\xi)}{\xi^\alpha}>0 \quad\text{and}\quad \limsup_{\xi\searrow0}\frac{|\phi^\prime(\xi)|}{\xi^{\alpha - 1}} < \infty, \] for some \(\alpha > 0\). Through distinct approaches, we establish that, for sufficiently regular initial data, in two- and higher-dimensional contexts, if \(\alpha\in[1, 2m)\), then \((\star)\) possesses global weak solutions, while in one-dimensional settings, the same conclusion holds for \(\alpha > 0\), and notably, the solution remains uniformly bounded when \(\alpha \geq 1\). Furthermore, for the one-dimensional case where \(\alpha \geq 1\), the bounded solution additionally possesses the convergence property that \[ u(\cdot, t)\overset{\ast}{\rightharpoonup} u_\infty \text{ in }L^\infty(\Omega) \text{ and } v(\cdot, t)\rightarrow 0 \text{ in }W^{1, \infty}(\Omega)\text{ as } t\rightarrow\infty, \] with \(u_\infty\in L^\infty(\Omega)\). Further conditions on the initial data enable the identification of admissible initial data for which \(u_\infty\) exhibits spatial heterogeneity.

MSC:

35D30 Weak solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
35D30 Weak solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
35K65 Degenerate parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Ahn, J.; Yoon, C., Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32, 1327-1351, 2019 · Zbl 1409.35104 · doi:10.1088/1361-6544/aaf513
[2] Alikakos, ND; Rostamian, R., Large time behavior of solutions of Neumann boundary value problem for the porous medium equation, Indiana Univ. Math. J., 30, 749-785, 1981 · Zbl 0598.76100 · doi:10.1512/iumj.1981.30.30056
[3] Amann, H., Dynamic theory of quasilinear parabolic systems III, Global Exist. Math. Z., 202, 219-250, 1989 · Zbl 0702.35125
[4] Burger, M.; Laurençot, P.; Trescases, A., Delayed blow-up for chemotaxis models with local sensing, J. London Math. Soc., 103, 1596-1617, 2021 · Zbl 1470.35073 · doi:10.1112/jlms.12420
[5] Desvillettes, L.; Trescases, A.; Laurençot, P.; Winkler, M., Weak solutions to triangular cross diffusion systems modeling chemotaxis with local sensing, Nonlinear Anal., 226, 113153, 2023 · Zbl 1501.35057 · doi:10.1016/j.na.2022.113153
[6] Fu, X.; Tang, LH; Liu, C.; Huang, JD; Hwa, T.; Lenz, P., Stripe formation in bacterial systems with density-suppresses motility, Phys. Rev. Lett., 108, 198102, 2012 · doi:10.1103/PhysRevLett.108.198102
[7] Fujie, K.; Jiang, J., Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equ., 269, 5338-5378, 2020 · Zbl 1440.35330 · doi:10.1016/j.jde.2020.04.001
[8] Fujie, K.; Jiang, J., Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities, Calc. Var. Partial Differ. Equ., 60, 92, 2021 · Zbl 1467.35044 · doi:10.1007/s00526-021-01943-5
[9] Fujie, K.; Senba, T., Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions, Nonlinear Anal., 222, 112987, 2022 · Zbl 1491.35066 · doi:10.1016/j.na.2022.112987
[10] Fujikawa, H., Periodic growth of Bacillus subtilis colonies on agar plates, Phys. A, 189, 15-21, 1992 · doi:10.1016/0378-4371(92)90123-8
[11] Fujikawa, H.; Matsushita, M., Fractal growth of Bacillus subtilis on agar plates, J. Phys. Soc. Japan, 47, 2764-2767, 1989
[12] Kawasaki, K.; Mochizuki, A.; Matsushita, M.; Umeda, T.; Shigesada, N., Modeling Spatio-temporal patterns generated by Bacillus subtilis, J. Theor. Biol., 188, 177-185, 1997 · doi:10.1006/jtbi.1997.0462
[13] Jiang, J.; Laurençot, Ph, Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility, J. Differ. Equ., 299, 513-541, 2021 · Zbl 1472.35401 · doi:10.1016/j.jde.2021.07.029
[14] Jin, H-Y; Kim, Y-J; Wang, Z-A, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78, 1632-1657, 2018 · Zbl 1393.35100 · doi:10.1137/17M1144647
[15] Liu, Z., Xu, J.: Large time behavior of solutions for density-suppressed motility system in higher dimensions. J. Math. Anal. Appl. 475, 1596-1613 (2019) · Zbl 1416.35277
[16] Ladyzhenskaia, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasi-linear equations of parabolic type, Vol. 23. American Mathematical Society (1968) · Zbl 0174.15403
[17] Leyva, JF; Málaga, C.; Plaza, RG, The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion, Phys. A, 392, 5644-5662, 2013 · Zbl 1395.92023 · doi:10.1016/j.physa.2013.07.022
[18] Li, G., Large-data global existence in ahigher-dimensional doubly degenerate nutrient system, J. Differ. Equ., 329, 318-347, 2022 · Zbl 1495.35106 · doi:10.1016/j.jde.2022.05.007
[19] Li, G.; Wang, L., Boundedness in a taxis-consumption system involving signal-dependent motilities and concurrent enhancement of density-determined diffusion and cross-diffusion, Z. Angew. Math. Phys., 74, 92, 2023 · Zbl 1518.35454 · doi:10.1007/s00033-023-01983-1
[20] Li, G.; Winkler, M., Nonnegative solutions to a doubly degenerate nutrient taxis system, Commun. Pure Appl. Anal., 21, 687-704, 2022 · Zbl 1483.35127 · doi:10.3934/cpaa.2021194
[21] Li, G.; Winkler, M., Relaxation in a Keller-Segel-consumption system involving signal-dependent motilities, Commun. Math. Sci., 21, 299-322, 2023 · Zbl 1518.35109 · doi:10.4310/CMS.2023.v21.n2.a1
[22] Li, G., Winkler, M.: Refined regularity analysis for a Keller-Segel-consumption system involving signal-dependent motilities. Appl. Anal. 103(1), 45-64 (2024). doi:10.1080/00036811.2023.2173183 · Zbl 1541.35113
[23] Liu, C., Sequential establishment of stripe patterns in an expanding cell population, Science, 334, 238, 2011 · doi:10.1126/science.1209042
[24] Lv, W.; Wang, Q., A \(n\)-dimensional chemotaxis system with signal-dependent motility and generalized logistic source: Global existence and asymptotic stabilization, Proc. Roy. Soc. Edinburgh Sect. A, 151, 821-841, 2021 · Zbl 1467.35324 · doi:10.1017/prm.2020.38
[25] Porzio, MM; Vespri, V., Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103, 146-178, 1993 · Zbl 0796.35089 · doi:10.1006/jdeq.1993.1045
[26] Tao, Y.; Winkler, M., Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., 252, 2520-2543, 2012 · Zbl 1268.35016 · doi:10.1016/j.jde.2011.07.010
[27] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 692-715, 2012 · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[28] Tao, Y.; Winkler, M., Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Mod. Meth. Appl. Sci., 27, 1645-1683, 2017 · Zbl 1516.35092 · doi:10.1142/S0218202517500282
[29] Vázquez, JL, The Porous Medium Equation: Mathematical Theory, 2007, Oxford: Oxford University Press, Oxford · Zbl 1107.35003
[30] Wang, J.; Wang, M., Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 60, 011507, 2019 · Zbl 1406.35154 · doi:10.1063/1.5061738
[31] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905, 2010 · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[32] Winkler, M., Can simultaneous density-determined enhancement of diffusion and cross-diffusion foster boundedness in Keller-Segel type systems involving signal-dependent motilities?, Nonlinearity, 33, 6590, 2020 · Zbl 1454.35224 · doi:10.1088/1361-6544/ab9bae
[33] Winkler, M., Does spatial homogeneity ultimately prevail in nutrient taxis systems? A paradigm for structure support by rapid diffusion decay in an autonomous parabolic flow, Trans. Amer. Math. Soc., 374, 219-268, 2021 · Zbl 1455.35026 · doi:10.1090/tran/8163
[34] Winkler, M., Chemotaxis-Stokes interaction with very weak diffusion enhancement: Blow-up exclusion via detection of absorption induced entropy structures involving multiplicative couplings, Adv. Nonlinear Stud., 22, 88-117, 2022 · Zbl 1511.35053 · doi:10.1515/ans-2022-0004
[35] Winkler, M., Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities, Discrete Contin. Dyn. Syst. Ser. B, 27, 6565-6587, 2022 · Zbl 1503.35051 · doi:10.3934/dcdsb.2022009
[36] Winkler, M.: Application of the Moser-Trudinger inequality in the construction of global solutions to a strongly degenerate migration model. Bull. Math. Sci. (World Scientific). 13(2), 2250012 (2023). doi:10.1142/S1664360722500126 · Zbl 1539.35140
[37] Winkler, M., Global generalized solvability in a strongly degenerate taxis-type parabolic system modeling migration-consumption interaction, Z. Angew. Math. Phys., 74, 32, 2023 · Zbl 1504.35181 · doi:10.1007/s00033-022-01925-3
[38] Winkler, M., Stabilization despite pervasive strong cross-degeneracies in a nonlinear diffusion model for migration-consumption interaction, Nonlinearity, 36, 4438-4469, 2023 · Zbl 1525.35040 · doi:10.1088/1361-6544/ace22e
[39] Winkler, M.: A strongly degenerate migration-consumption model in domains of arbitrary dimension. arXiv preprint (2023). https://arxiv.org/abs/2312.12409
[40] Winkler, M.: A quantitative strong parabolic maximum principle and application to a taxis-type migration-consumption model involving signal-dependent degenerate diffusion. Ann. Inst. H. Poinceré Anal. Non Linéaire 41, 95-127 (2024) · Zbl 1539.35020
[41] Winkler, M.: Elliptic Harnack inequalities in linear parabolic equations and application to the asymptotics in a doubly degenerate nutrient taxis system. Preprint
[42] Xu, C.; Wang, Y., Asymptotic behavior of a quasilinear Keller-Segel system with signal-suppressed motility, Calc. Var. Partial Differ. Equ., 60, 183, 2021 · Zbl 1471.35050 · doi:10.1007/s00526-021-02053-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.