×

Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results. (English) Zbl 07896320

Ann. Inst. Henri Poincaré, Anal. Non Linéaire 41, No. 5, 1289-1321 (2024); corrigendum ibid. 41, No. 5, 1323-1324 (2024).
Summary: We consider Gagliardo-Nirenberg inequalities on the sphere which interpolate between the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We establish explicit stability results in the subcritical regime using spectral decomposition techniques, and entropy and carré du champ methods applied to nonlinear diffusion flows.
A correction to this paper is available.

MSC:

26D10 Inequalities involving derivatives and differential and integral operators
58J99 Partial differential equations on manifolds; differential operators
39B62 Functional inequalities, including subadditivity, convexity, etc.
43A90 Harmonic analysis and spherical functions
49J40 Variational inequalities
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] A. Arnold, J.-P. Bartier, and J. Dolbeault, Interpolation between logarithmic Sobolev and Poin-caré inequalities. Commun. Math. Sci. 5 (2007), no. 4, 971-979 Zbl 1146.60063 MR 2375056 · Zbl 1146.60063 · doi:10.4310/cms.2007.v5.n4.a12
[2] A. Arnold and J. Dolbeault, Refined convex Sobolev inequalities. J. Funct. Anal. 225 (2005), no. 2, 337-351 Zbl 1087.35018 MR 2152502 · Zbl 1087.35018 · doi:10.1016/j.jfa.2005.05.003
[3] D. Bakry and M. Émery, Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, pp. 177-206, Lecture Notes in Math. 1123, Springer, Berlin, 1985 Zbl 0561.60080 MR 889476 · Zbl 0561.60080 · doi:10.1007/BFb0075847
[4] D. Bakry and M. Émery, Inégalités de Sobolev pour un semi-groupe symétrique. C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 8, 411-413 Zbl 0579.60079 MR 808640 · Zbl 0579.60079
[5] D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators. Grundlehren Math. Wiss. 348, Springer, Cham, 2014 Zbl 1376.60002 MR 3155209 · Zbl 1376.60002 · doi:10.1007/978-3-319-00227-9
[6] W. Beckner, A generalized Poincaré inequality for Gaussian measures. Proc. Amer. Math. Soc. 105 (1989), no. 2, 397-400 Zbl 0677.42020 MR 954373 · Zbl 0677.42020 · doi:10.2307/2046956
[7] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. of Math. (2) 138 (1993), no. 1, 213-242 Zbl 0826.58042 MR 1230930 · Zbl 0826.58042 · doi:10.2307/2946638
[8] M. Berger, P. Gauduchon, and E. Mazet, Le spectre d’une variété riemannienne. Lecture Notes in Math. 194, Springer, Berlin-New York, 1971 Zbl 0223.53034 MR 282313 · Zbl 0223.53034 · doi:10.1007/bfb0064646
[9] G. Bianchi and H. Egnell, A note on the Sobolev inequality. J. Funct. Anal. 100 (1991), no. 1, 18-24 Zbl 0755.46014 MR 1124290 · Zbl 0755.46014 · doi:10.1016/0022-1236(91)90099-Q
[10] M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian man-ifolds and asymptotics of Emden equations. Invent. Math. 106 (1991), no. 3, 489-539 Zbl 0755.35036 MR 1134481 · Zbl 0755.35036 · doi:10.1007/BF01243922
[11] M. Bonforte, J. Dolbeault, B. Nazaret, and N. Simonov, Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method. arXiv:2007.03674, to appear in Memoirs of the AMS
[12] H. Brezis and E. H. Lieb, Sobolev inequalities with remainder terms. J. Funct. Anal. 62 (1985), no. 1, 73-86 Zbl 0577.46031 MR 790771 · Zbl 0577.46031 · doi:10.1016/0022-1236(85)90020-5
[13] E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on S n . Geom. Funct. Anal. 2 (1992), no. 1, 90-104 Zbl 0754.47041 MR 1143664 · Zbl 0754.47041 · doi:10.1007/BF01895706
[14] E. A. Carlen and D. W. Stroock, An application of the Bakry-Emery criterion to infinite-dimensional diffusions. In Séminaire de Probabilités, XX, 1984/85, pp. 341-348, Lecture Notes in Math. 1204, Springer, Berlin, 1986 Zbl 0609.60086 MR 942029 · Zbl 0609.60086 · doi:10.1007/BFb0075726
[15] L. Chen, G. Lu, and H. Tang, Sharp stability of log-Sobolev and Moser-Onofri inequalities on the sphere. J. Funct. Anal. 285 (2023), no. 5, article no. 110022 Zbl 07694910 MR 4595542 · Zbl 1526.46021 · doi:10.1016/j.jfa.2023.110022
[16] S. Chen, R. L. Frank, and T. Weth, Remainder terms in the fractional Sobolev inequality. Indiana Univ. Math. J. 62 (2013), no. 4, 1381-1397 Zbl 1296.46032 MR 3179693 · Zbl 1296.46032 · doi:10.1512/iumj.2013.62.5065
[17] J. Demange, Des équations à diffusion rapide aux inégalités de Sobolev sur les modèles de la géométrie. Ph.D. thesis, Université Paul Sabatier Toulouse 3, 2005
[18] J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature. J. Funct. Anal. 254 (2008), no. 3, 593-611 Zbl 1133.58012 MR 2381156 · Zbl 1133.58012 · doi:10.1016/j.jfa.2007.01.017
[19] J. Dolbeault, M. J. Esteban, A. Figalli, R. L. Frank, and M. Loss, Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence. arXiv:2209.08651, sub-mitted
[20] J. Dolbeault and M. J. Esteban, Improved interpolation inequalities and stability. Adv. Nonlin-ear Stud. 20 (2020), no. 2, 277-291 Zbl 1437.26018 MR 4095470 · Zbl 1437.26018 · doi:10.1515/ans-2020-2080
[21] J. Dolbeault, M. J. Esteban, M. Kowalczyk, and M. Loss, Improved interpolation inequalities on the sphere. Discrete Contin. Dyn. Syst. Ser. S 7 (2014), no. 4, 695-724 Zbl 1290.26022 MR 3177759 · Zbl 1290.26022 · doi:10.3934/dcdss.2014.7.695
[22] J. Dolbeault, M. J. Esteban, and M. Loss, Nonlinear flows and rigidity results on compact manifolds. J. Funct. Anal. 267 (2014), no. 5, 1338-1363 Zbl 1294.58005 MR 3229793 · Zbl 1294.58005 · doi:10.1016/j.jfa.2014.05.021
[23] J. Dolbeault, M. J. Esteban, and M. Loss, Interpolation inequalities on the sphere: Linear vs. nonlinear flows. Ann. Fac. Sci. Toulouse Math. (6) 26 (2017), no. 2, 351-379 Zbl 1372.58017 MR 3640894 · Zbl 1372.58017 · doi:10.5802/afst.1536
[24] J. Dolbeault, M. J. Esteban, M. Loss, and M. Muratori, Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities. C. R. Math. Acad. Sci. Paris 355 (2017), no. 2, 133-154 Zbl 1379.49009 MR 3612700 · Zbl 1379.49009 · doi:10.1016/j.crma.2017.01.004
[25] J. Dolbeault and G. Jankowiak, Sobolev and Hardy-Littlewood-Sobolev inequalities. J. Dif-ferential Equations 257 (2014), no. 6, 1689-1720 Zbl 1303.26017 MR 3227280 · Zbl 1303.26017 · doi:10.1016/j.jde.2014.04.021
[26] J. Dolbeault and X. Li, ’-entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations. Math. Models Methods Appl. Sci. 28 (2018), no. 13, 2637-2666 Zbl 1411.82032 MR 3884261 · Zbl 1411.82032 · doi:10.1142/S0218202518500574
[27] J. Dolbeault and G. Toscani, Improved interpolation inequalities, relative entropy and fast diffusion equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire 30 (2013), no. 5, 917-934 Zbl 1450.46020 MR 3103175 · Zbl 1450.46020 · doi:10.1016/j.anihpc.2012.12.004
[28] J. Dolbeault and G. Toscani, Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities. Int. Math. Res. Not. IMRN (2016), no. 2, 473-498 Zbl 1355.46038 MR 3493423 · Zbl 1355.46038 · doi:10.1093/imrn/rnv131
[29] J. Dolbeault and A. Zhang, Optimal functional inequalities for fractional operators on the sphere and applications. Adv. Nonlinear Stud. 16 (2016), no. 4, 863-880 Zbl 1353.35020 MR 3562947 · Zbl 1353.35020 · doi:10.1515/ans-2016-0121
[30] M. Fathi, E. Indrei, and M. Ledoux, Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete Contin. Dyn. Syst. 36 (2016), no. 12, 6835-6853 Zbl 1355.60094 MR 3567822 · Zbl 1355.60094 · doi:10.3934/dcds.2016097
[31] F. Feo, E. Indrei, M. R. Posteraro, and C. Roberto, Some remarks on the stability of the log-Sobolev inequality for the Gaussian measure. Potential Anal. 47 (2017), no. 1, 37-52 Zbl 1373.28014 MR 3666798 · Zbl 1373.28014 · doi:10.1007/s11118-016-9607-5
[32] R. L. Frank, Degenerate stability of some Sobolev inequalities. Ann. Inst. H. Poincaré C Anal. Non Linéaire 39 (2022), no. 6, 1459-1484 Zbl 1515.39016 MR 4540755 · Zbl 1515.39016 · doi:10.4171/aihpc/35
[33] R. L. Frank and E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality. In Spectral theory, function spaces and inequalities, pp. 55-67, Oper. Theory Adv. Appl. 219, Birkhäuser/Springer Basel AG, Basel, 2012 Zbl 1297.39023 MR 2848628 · Zbl 1297.39023 · doi:10.1007/978-3-0348-0263-5_4
[34] E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili. Ricerche Mat. 7 (1958), 102-137 Zbl 0089.09401 MR 102740 · Zbl 0089.09401
[35] L. Gross, Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975), no. 4, 1061-1083 Zbl 0318.46049 MR 420249 · Zbl 0318.46049 · doi:10.2307/2373688
[36] L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups. In Dirichlet forms (Varenna, 1992), pp. 54-88, Lecture Notes in Math. 1563, Springer, Berlin, 1993 Zbl 0812.47037 MR 1292277 · Zbl 0812.47037 · doi:10.1007/BFb0074091
[37] C. Gui and A. Moradifam, The sphere covering inequality and its applications. Invent. Math. 214 (2018), no. 3, 1169-1204 Zbl 1410.53037 MR 3878729 · Zbl 1410.53037 · doi:10.1007/s00222-018-0820-2
[38] E. Indrei and D. Kim, Deficit estimates for the logarithmic Sobolev inequality. Differential Integral Equations 34 (2021), no. 7-8, 437-466 Zbl 1513.35276 MR 4305006 · Zbl 1513.35276 · doi:10.57262/die034-0708-437
[39] E. Indrei and D. Marcon, A quantitative log-Sobolev inequality for a two parameter family of functions. Int. Math. Res. Not. IMRN (2014), no. 20, 5563-5580 Zbl 1317.46023 MR 3271181 · Zbl 1317.46023 · doi:10.1093/imrn/rnt138
[40] G. Jankowiak and V. H. Nguyen, Fractional Sobolev and Hardy-Littlewood-Sobolev inequal-ities. 2014, arXiv:1404.1028
[41] D. Kim, Instability results for the logarithmic Sobolev inequality and its application to related inequalities. Discrete Contin. Dyn. Syst. 42 (2022), no. 9, 4297-4320 Zbl 1503.26033 MR 4455233 · Zbl 1503.26033 · doi:10.3934/dcds.2022053
[42] T. König, On the sharp constant in the Bianchi-Egnell stability inequality. Bull. Lond. Math. Soc. 55 (2023), no. 4, 2070-2075 Zbl 07738119 MR 4623703 · Zbl 1532.46030 · doi:10.1112/blms.12837
[43] R. Latała and K. Oleszkiewicz, Between Sobolev and Poincaré. In Geometric aspects of func-tional analysis, pp. 147-168, Lecture Notes in Math. 1745, Springer, Berlin, 2000 Zbl 0986.60017 MR 1796718 · Zbl 0986.60017 · doi:10.1007/BFb0107213
[44] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. (2) 118 (1983), no. 2, 349-374 Zbl 0527.42011 MR 717827 · Zbl 0527.42011 · doi:10.2307/2007032
[45] M. Morimoto, Analytic functionals on the sphere. Transl. Math. Monogr. 178, American Math-ematical Society, Providence, RI, 1998 Zbl 0922.46040 MR 1641900 · Zbl 0922.46040 · doi:10.1090/mmono/178
[46] C. E. Mueller and F. B. Weissler, Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere. J. Functional Analysis 48 (1982), no. 2, 252-283 Zbl 0506.46022 MR 674060 · Zbl 0506.46022 · doi:10.1016/0022-1236(82)90069-6
[47] C. Müller, Spherical harmonics. Lecture Notes in Math. 17, Springer, Berlin-New York, 1966 Zbl 0138.05101 MR 199449 · Zbl 0138.05101 · doi:10.1007/BFb0094775
[48] E. Nelson, The free Markoff field. J. Functional Analysis 12 (1973), 211-227 Zbl 0273.60079 MR 343816 · Zbl 0273.60079 · doi:10.1016/0022-1236(73)90025-6
[49] L. Nirenberg, On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 115-162, httpW//www.numdam.org/item/ASNSP_1959_3_13_2_115_0/, visited on 23 November 2023 Zbl 0088.07601 MR 109940 · Zbl 0088.07601
[50] O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Functional Analysis 42 (1981), no. 1, 110-120 Zbl 0471.58025 MR 620582 · Zbl 0471.58025 · doi:10.1016/0022-1236(81)90050-1
[51] S. L. Soboleff, Sur un théorème d’analyse fonctionnelle. Rec. Math. Moscou n. Ser. 4 (1938), no. 46(3), 471-497, httpsW//www.mathnet.ru/eng/sm5759, visited on 23 November 2023 Zbl 0022.14803 · JFM 64.1100.02
[52] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton Math. Ser. 32, Princeton University Press, Princeton, NJ, 1971, httpW//www.jstor.org/stable/ j.ctt1bpm9w6, visited on 23 November 2023 Zbl 0232.42007 MR 304972 · Zbl 0232.42007
[53] F.-Y. Wang, A generalization of Poincaré and log-Sobolev inequalities. Potential Anal. 22 (2005), no. 1, 1-15 Zbl 1068.47051 MR 2127729 · Zbl 1068.47051 · doi:10.1007/s11118-004-4006-8
[54] F.-Y. Wang, Functional inequalities, Markov semigroups and spectral theory. Mathematics Monograph Series, Elsevier, Burlington, MA, 2006
[55] F.-Y. Wang, From super Poincaré to weighted log-Sobolev and entropy-cost inequalities. J. Math. Pures Appl. (9) 90 (2008), no. 3, 270-285 Zbl 1155.60009 MR 2446080 · Zbl 1155.60009 · doi:10.1016/j.matpur.2008.06.004
[56] F. B. Weissler, Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Functional Analysis 37 (1980), no. 2, 218-234 Zbl 0463.46024 MR 578933 · Zbl 0463.46024 · doi:10.1016/0022-1236(80)90042-7
[57] .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.