×

Regularized least absolute deviation-based sparse identification of dynamical systems. (English) Zbl 07880545


MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations
Full Text: DOI

References:

[1] Candes, E.; Romberg, J.; Tao, T., Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52, 489-509, 2006 · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[2] Donoho, D., Compressed sensing, IEEE Trans. Inf. Theory, 52, 1289-1306, 2006 · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[3] Baraniuk, R. G., Compressive sensing [lecture notes], IEEE Signal Process. Mag., 24, 118-121, 2007 · doi:10.1109/MSP.2007.4286571
[4] Candes, E. J.; Wakin, M. B., An introduction to compressive sampling, IEEE Signal Process. Mag., 25, 21-30, 2008 · doi:10.1109/MSP.2007.914731
[5] Baraniuk, R. G.; Cevher, V.; Duarte, M. F.; Hegde, C., Model-based compressive sensing, IEEE Trans. Inf. Theory, 56, 1982-2001, 2010 · Zbl 1366.94215 · doi:10.1109/TIT.2010.2040894
[6] Wang, W.-X.; Yang, R.; Lai, Y.-C.; Kovanis, V.; Grebogi, C., Predicting catastrophes in nonlinear dynamical systems by compressive sensing, Phys. Rev. Lett., 106, 154101, 2011 · doi:10.1103/PhysRevLett.106.154101
[7] Wang, W.-X.; Lai, Y.-C.; Grebogi, C.; Ye, J., Network reconstruction based on evolutionary-game data via compressive sensing, Phys. Rev. X, 1, 021021, 2011 · doi:10.1103/PhysRevX.1.021021
[8] Wang, W.-X.; Yang, R.; Lai, Y.-C.; Kovanis, V.; Harrison, M. A. F., Time-series-based prediction of complex oscillator networks via compressive sensing, Europhys. Lett., 94, 48006, 2011 · doi:10.1209/0295-5075/94/48006
[9] Brunton, S. L.; Tu, J. H.; Bright, I.; Kutz, J. N., Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems, SIAM J. Appl. Dyn. Syst., 13, 1716-1732, 2014 · Zbl 1354.37078 · doi:10.1137/130949282
[10] Brunton, S. L.; Proctor, J. L.; Kutz, J. N., Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. U.S.A., 113, 3932-3937, 2016 · Zbl 1355.94013 · doi:10.1073/pnas.1517384113
[11] Mangan, N. M.; Brunton, S. L.; Proctor, J. L.; Kutz, J. N., Inferring biological networks by sparse identification of nonlinear dynamics, IEEE Trans. Mol., Biol. Multi-Scale Commun., 2, 52-63, 2016 · doi:10.1109/TMBMC.2016.2633265
[12] Mangan, N. M.; Kutz, J. N.; Brunton, S. L.; Proctor, J. L., Model selection for dynamical systems via sparse regression and information criteria, Proc. R. Soc. A: Math., Phys. Eng. Sci., 473, 20170009, 2017 · Zbl 1404.65308 · doi:10.1098/rspa.2017.0009
[13] Boninsegna, L.; Nüske, F.; Clementi, C., Sparse learning of stochastic dynamical equations, J. Chem. Phys., 148, 241723, 2018 · doi:10.1063/1.5018409
[14] Quade, M.; Abel, M.; Nathan Kutz, J.; Brunton, S. L., Sparse identification of nonlinear dynamics for rapid model recovery, Chaos, 28, 063116, 2018 · doi:10.1063/1.5027470
[15] Mangan, N. M.; Askham, T.; Brunton, S. L.; Kutz, J. N.; Proctor, J. L., Model selection for hybrid dynamical systems via sparse regression, Proc. R. Soc. A: Math., Phys. Eng. Sci., 475, 20180534, 2019 · Zbl 1427.93253 · doi:10.1098/rspa.2018.0534
[16] Zhang, L.; Schaeffer, H., On the convergence of the SINDy algorithm, Multiscale Model. Simul., 17, 948-972, 2019 · Zbl 1437.37108 · doi:10.1137/18M1189828
[17] Schaeffer, H.; McCalla, S. G., Sparse model selection via integral terms, Phys. Rev. E, 96, 023302, 2017 · doi:10.1103/PhysRevE.96.023302
[18] Champion, K.; Lusch, B.; Kutz, J. N.; Brunton, S. L., Data-driven discovery of coordinates and governing equations, Proc. Natl. Acad. Sci. U.S.A., 116, 22445-22451, 2019 · Zbl 1433.68396 · doi:10.1073/pnas.1906995116
[19] Bramburger, J. J.; Dylewsky, D.; Kutz, J. N., Sparse identification of slow timescale dynamics, Phys. Rev. E, 102, 022204, 2020 · doi:10.1103/PhysRevE.102.022204
[20] Schaeffer, H.; Caflisch, R.; Hauck, C. D.; Osher, S., Sparse dynamics for partial differential equations, Proc. Natl. Acad. Sci. U.S.A., 110, 6634-6639, 2013 · Zbl 1292.35012 · doi:10.1073/pnas.1302752110
[21] Schaeffer, H., Learning partial differential equations via data discovery and sparse optimization, Proc. R. Soc. A: Math., Phys. Eng. Sci., 473, 20160446, 2017 · Zbl 1404.35397 · doi:10.1098/rspa.2016.0446
[22] Rudy, S. H.; Brunton, S. L.; Proctor, J. L.; Kutz, J. N., Data-driven discovery of partial differential equations, Sci. Adv., 3, e1602614, 2017 · doi:10.1126/sciadv.1602614
[23] Gurevich, D. R.; Reinbold, P. A. K.; Grigoriev, R. O., Robust and optimal sparse regression for nonlinear PDE models, Chaos, 29, 103113, 2019 · Zbl 1433.35387 · doi:10.1063/1.5120861
[24] Thaler, S.; Paehler, L.; Adams, N. A., Sparse identification of truncation errors, J. Comput. Phys., 397, 108851, 2019 · Zbl 1453.65281 · doi:10.1016/j.jcp.2019.07.049
[25] Lai, Y.-C., Finding nonlinear system equations and complex network structures from data: A sparse optimization approach, Chaos, 31, 082101, 2021 · Zbl 07866658 · doi:10.1063/5.0062042
[26] AlMomani, A. A. R.; Sun, J.; Bollt, E., How entropic regression beats the outliers problem in nonlinear system identification, Chaos, 30, 013107, 2020 · Zbl 1433.93032 · doi:10.1063/1.5133386
[27] Aggarwal, C. C., Hinneburg, A., and Keim, D. A., “On the surprising behavior of distance metrics in high dimensional space,” in Database Theory—ICDT 2001 edited by G. Goos, J. Hartmanis, J. van Leeuwen, J. Van den Bussche, and V. Vianu (Springer, Berlin, 2001), Vol. 1973, pp. 420-434. · Zbl 1047.68038
[28] Wang, L., Gordon, M., and Zhu, J., “Regularized least absolute deviations regression and an efficient algorithm for parameter tuning,” in Sixth International Conference on Data Mining (ICDM’06), Hong Kong (IEEE, 2006), pp. 690-700.
[29] Wang, H.; Li, G.; Jiang, G., Robust regression shrinkage and consistent variable selection through the LAD-Lasso, J. Bus. Econ. Stat., 25, 347-355, 2007 · doi:10.1198/073500106000000251
[30] Lambert-Lacroix, S.; Zwald, L., Robust regression through the Huber’s criterion and adaptive LASSO penalty, Electron. J. Stat., 5, 1015-1053, 2011 · Zbl 1274.62467 · doi:10.1214/11-EJS635
[31] Gabay, D.; Mercier, B., A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. with Appl., 2, 17-40, 1976 · Zbl 0352.65034 · doi:10.1016/0898-1221(76)90003-1
[32] Boyd, S., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1-122, 2010 · Zbl 1229.90122 · doi:10.1561/2200000016
[33] Donoho, D.; Elad, M.; Temlyakov, V., Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Trans. Inf. Theory, 52, 6-18, 2006 · Zbl 1288.94017 · doi:10.1109/TIT.2005.860430
[34] Bai, J.; Li, J.; Xu, F.; Zhang, H., Generalized symmetric ADMM for separable convex optimization, Comput. Optim. Appl., 70, 129-170, 2018 · Zbl 1461.65126 · doi:10.1007/s10589-017-9971-0
[35] He, B.; Liao, L.-Z.; Han, D.; Yang, H., A new inexact alternating directions method for monotone variational inequalities, Math. Program., 92, 103-118, 2002 · Zbl 1009.90108 · doi:10.1007/s101070100280
[36] Bai, J.; Chang, X.; Li, J.; Xu, F., Convergence revisit on generalized symmetric ADMM, Optimization, 70, 149-168, 2021 · Zbl 1459.90149 · doi:10.1080/02331934.2019.1704754
[37] Bai, J.; Hager, W. W.; Zhang, H., An inexact accelerated stochastic ADMM for separable convex optimization, Comput. Optim. Appl., 81, 479-518, 2022 · Zbl 1487.90521 · doi:10.1007/s10589-021-00338-8
[38] Chang, X.; Bai, J.; Song, D.; Liu, S., Linearized symmetric multi-block ADMM with indefinite proximal regularization and optimal proximal parameter, Calcolo, 57, 38, 2020 · Zbl 1467.65061 · doi:10.1007/s10092-020-00387-1
[39] He, B. S.; Yang, H.; Wang, S. L., Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, J. Optim. Theory Appl., 106, 337-356, 2000 · Zbl 0997.49008 · doi:10.1023/A:1004603514434
[40] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141, 1963 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020¡0130:DNF¿2.0.CO;2
[41] Yao, C.; Bollt, E. M., Modeling and nonlinear parameter estimation with Kronecker product representation for coupled oscillators and spatiotemporal systems, Phys. D: Nonlinear Phenom., 227, 78-99, 2007 · Zbl 1120.34006 · doi:10.1016/j.physd.2006.12.006
[42] Pan, S.; Duraisamy, K., Data-driven discovery of closure models, SIAM J. Appl. Dyn. Syst., 17, 2381-2413, 2018 · Zbl 1411.70023 · doi:10.1137/18M1177263
[43] Brown, R.; Rulkov, N. F.; Tracy, E. R., Modeling and synchronizing chaotic systems from time-series data, Phys. Rev. E, 49, 3784-3800, 1994 · doi:10.1103/PhysRevE.49.3784
[44] Diks, C.; van Zwet, W. R.; Takens, F.; DeGoede, J., Detecting differences between delay vector distributions, Phys. Rev. E, 53, 2169-2176, 1996 · doi:10.1103/PhysRevE.53.2169
[45] Vlachas, P.; Pathak, J.; Hunt, B.; Sapsis, T.; Girvan, M.; Ott, E.; Koumoutsakos, P., Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics, Neural Netw., 126, 191-217, 2020 · doi:10.1016/j.neunet.2020.02.016
[46] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467, 1976 · Zbl 1369.37088 · doi:10.1038/261459a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.