×

MUPHY: a parallel multi physics/scale code for high performance bio-fluidic simulations. (English) Zbl 07872391

Summary: We present a parallel version of MUPHY, a multi-physics/scale code based upon the combination of microscopic Molecular Dynamics (MD) with a hydro-kinetic Lattice Boltzmann (LB) method. The features of the parallel version of MUPHY are hereby demonstrated for the case of translocation of biopolymers through nanometer-sized, multi-pore configurations, taking into explicit account the hydrodynamic interactions of the translocating molecules with the surrounding fluid. The parallel implementation exhibits excellent scalability on the IBM BlueGene platform and includes techniques which may improve the flexibility and efficiency of other complex multi-physics parallel applications, such as hemodynamics, targeted-drug delivery and others.

MSC:

76-XX Fluid mechanics
82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] P. Lethbridge, Multiphysics analysis, The Industrial Physicist, Dec. 2004/Jan. 2005; P. Lethbridge, Multiphysics analysis, The Industrial Physicist, Dec. 2004/Jan. 2005
[2] Lu, G.; Kaxiras, E., Overview of Multiscale Simulations of Materials, (Rieth, M.; Schommers, W., Handbook of Theoretical and Computational Nanothechnology, vol. X (2005), American Scientific Publishers), 1-33
[3] Benzi, R.; Succi, S.; Vergassola, M., Phys. Rep., 222, 145-197 (1992)
[4] Wolf-Gladrow, D. A., Lattice Gas Cellular Automata and Lattice Boltzmann Models (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0999.82054
[5] Succi, S., The Lattice Boltzmann Equation (2001), Oxford University Press: Oxford University Press Oxford · Zbl 0990.76001
[6] Ahlrichs, P.; Duenweg, B., Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics, J. Chem. Phys., 111, 8225-8239 (1999)
[7] Fyta, M. G.; Melchionna, S.; Kaxiras, E.; Succi, S., Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore, Multiscale Model. Simul., 5, 1156-1173 (2006) · Zbl 1132.68810
[8] Fyta, M.; Sircar, J.; Kaxiras, E.; Melchionna, S.; Bernaschi, M.; Succi, S., Parallel multiscale modeling of biopolymer dynamics with hydrodynamic correlations, Intl. J. Multiscale Comput. Eng., 6, 25 (2008)
[9] Adhikari, R.; Stratford, K.; Cates, M. E.; Wagner, A. J., Fluctuating lattice-Boltzmann, Europhys. Lett., 71, 473-477 (2005)
[10] Dünweg, B.; Ladd, A. J.C., Lattice Boltzmann simulations of soft matter systems, Adv. Polymer Sci., 89, 221 (2009)
[11] Melchionna, S., Design of quasi-symplectic propagators for Langevin dynamics, J. Chem. Phys., 127 (2007), 044108-1/10
[12] Nie, X. B.; Chen, S. Y.; E, W. N.; Robbins, M., A continuum and molecular dynamics hybrid method for micro and nano-fluid flow, J. Fluid Mech., 500, 55 (2004) · Zbl 1059.76060
[13] Werder, T.; Walther, J. H.; Koumoutsakos, P., Hybrid atomistic-continuum method for the simulation of dense fluid flows, J. Comp. Phys., 205, 373 (2005) · Zbl 1087.76542
[15] Amati, G.; Piva, R.; Succi, S., Massively parallel Lattice-Boltzmann simulation of turbulent channel flow, Intl. J. Modern Phys. C, 4, 869-877 (1997)
[16] Mazzeo, M.; Coveney, P. V., HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries, Comput. Phys. Comm., 178, 894-914 (2008) · Zbl 1196.76008
[17] Boyer, L. L.; Pawley, G. S., Molecular dynamics of clusters of particles interacting with pairwise forces using a massively parallel computer, J. Comp. Phys., 78, 405-423 (1988) · Zbl 0649.65010
[18] Heller, H.; Grubmuller, H.; Schulten, K., Molecular dynamics simulation on a parallel computer, Molec. Sim., 5, 133-165 (1990)
[19] Rapaport, D., Multi-million particle molecular dynamics: II. Design considerations for distributed processing, Comput. Phys. Comm., 62, 198-216 (1991)
[20] Brown, D.; Clarke, J. H.R.; Okuda, T.; Yamazaki, M., A domain decomposition parallelization strategy for molecular dynamics simulations on distributed memory machines, Comput. Phys. Comm., 74, 67-80 (1993)
[21] Esselink, K.; Smit, B.; Hilbers, P. A.J., Efficient parallel implementation of molecular dynamics on a toroidal network: I. Parallelizing strategy, J. Comp. Phys., 106, 101-107 (1993)
[22] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys., 117, 1-19 (1995) · Zbl 0830.65120
[23] Wellein, G.; Zeiser, T.; Donath, S.; Hager, G., On the single processor performance of simple lattice Boltzmann kernels, Computers & Fluids, 35 (2006) · Zbl 1177.76335
[24] Dupuis, A.; Chopard, B., Lattice gas: an efficient and reusable parallel library based on a graph partitioning technique, (Sloot, P.; Bubak, M.; Hoekstra, A.; Hertzberger, B., HPCN Europe 1999 (1999), Springer)
[25] Schulz, M.; Krafczyk, M.; Toelke, J.; Rank, E., Parallelization strategies and efficiency of CFD computations in complex geometries using the lattice Boltzmann methods on high-performance computers, (Breuer, M.; Durst, F.; Zenger, C., High Performance Scientific and Engineering Computing, Proceedings of the 3rd International Fortwihr Conference on HPESC. High Performance Scientific and Engineering Computing, Proceedings of the 3rd International Fortwihr Conference on HPESC, Erlangen, March 12-14, 2001. High Performance Scientific and Engineering Computing, Proceedings of the 3rd International Fortwihr Conference on HPESC. High Performance Scientific and Engineering Computing, Proceedings of the 3rd International Fortwihr Conference on HPESC, Erlangen, March 12-14, 2001, Lecture Notes in Computational Science and Engineering, vol. 21 (2002), Springer)
[26] Axner, L.; Bernsdorf, J. M.; Zeiser, T.; Lammers, P.; Linxweiler, J.; Hoekstra, A. G., Performance evaluation of a parallel sparse lattice Boltzmann solver, J. Comp. Phys., 227, 10 (2008) · Zbl 1137.76045
[28] Kim, M. J.; Wanunu, M.; Bell, D. C.; Meller, A., Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis, Adv. Mater., 18, 3149-3153 (2006)
[29] Lodish, H.; Baltimore, D.; Berk, A.; Zipursky, S.; Matsudaira, P.; Darnell, J., Molecular Cell Biology (1996), W.H. Freeman and Company: W.H. Freeman and Company New York
[30] Fyta, M.; Kaxiras, E.; Melchionna, S.; Bernaschi, M.; Succi, S., Quantized current blockade and hydrodynamic correlations in biopolymer translocation through nanopores: evidence from multiscale simulations, Nano Letters, 8, 4, 1115-1119 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.