×

On a generalization of the Opial inequality. (English) Zbl 07863324

Z. Opial [Ann. Pol. Math. 9, 145–155 (1960; Zbl 0098.29102)] stated and proved the following classical inequality \[ \int^h_0\mid f(x)f'(x)\mid dx\le\frac1{4}\int^h_0\mid f'(x)\mid^2dx, \] where \(f\in C^1[0,h]\) and satisfies \(f(0)=f(h)=0\) and \(f(x) >0\) for all\(x\in (0,h).\) The above inequality is referred to as the Opial’s inequality. In this paper the authors derived and proves some new Opial type-inequalities and gave their applications to the generalized Riemann-Liouville-type integral operators. The key results of the paper are given in Theorems 1 and 3 and several consequences of their results and pointed out and well discussed.

MSC:

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals

Citations:

Zbl 0098.29102

References:

[1] S. Bermudo, P. Kórus, and J. E. Nápoles, On q-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hungar. 162 (2020), no. 1, 364-374. · Zbl 1474.26085
[2] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. [electronic only] 1 (2010), no. 1, 51-58. · Zbl 1205.26031
[3] J. Han, P. O. Mohammed, and H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math. 18 (2020), no. 1, 794-806. · Zbl 1482.26030
[4] H. Kalsoom, M. Latif, Z. Khan, and M. Vivas-Cortez, Some new Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-convex interval-valued functions, Math. 10 (2022), no. 1, 74.
[5] P. O. Mohammed and I. Brevik, A New version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry 12 (2020), no. 4, 610.
[6] S. Mubeen, S. Habib, and M. N. Naeem, The Minkowski inequality involving generalized k-fractional conformable integral, J. Inequal. Appl. 2019 (2019), no. 1, 81. · Zbl 1499.26152
[7] K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, and M. Arshad, Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl. 2018 (2018), no. 1, 135. · Zbl 1498.26032
[8] Y. Quintana, J. M. Rodríguez, and J. M. Sigarreta, Jensen-type inequalities for convex and m-convex functions via fractional calculus, Open Math. 20 (2022), 946-958. · Zbl 1514.26013
[9] G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, and K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ Equ. 2019 (2019), no. 1, 454. · Zbl 1485.45015
[10] G. Rahman, K. S. Nisar, B. Ghanbari, and T. Abdeljawad, On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals, Adv. Differ Equ. 2020 (2020), no. 1, 368. · Zbl 1485.26047
[11] S. Rashid, M. A. Noor, K. I. Noor, and Y.-M. Chu, Ostrowski type inequalities in the sense of generalized k-fractional integral operator for exponentially convex functions, AIMS Math. 5 (2020), no. 3, 2629-2645. · Zbl 1484.26038
[12] Y. Sawano and H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space, J. Fourier Anal. Appl. 19 (2012), no. 1, 20-47. · Zbl 1308.46049
[13] E. Set, M. Tomar, and M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput. 269 (2015), 29-34. · Zbl 1410.26046
[14] M. Vivas-Cortez, F. Martínez, J. E. Nápoles Valdes, and J. E. Hernández, On Opial-type inequality for a generalized fractional integral operator, Demonstr. Math. 55 (2022), no. 1, 695-709. · Zbl 1509.26016
[15] P. Bosch, H. J. Carmenate, J. M. Rodríguez, and J. M. Sigarreta, Generalized inequalities involving fractional operators of the Riemann-Liouville type, AIMS Math. 7 (2021), no. 1, 1470-1485.
[16] A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Vienna, 1997. · Zbl 0917.73004
[17] A. Kilbas, O. Marichev, and S. Samko, Fractional Integrals and Derivatives. Theory and Applications, Gordon & Breach, Pennsylvania, 1993. · Zbl 0818.26003
[18] Z. Opial, Sur une inégalité, Ann. Pol. Math. 8 (1960), no. 1, 29-32. · Zbl 0089.27403
[19] R. Agarwal and P. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Springer, Netherlands, 2013.
[20] V. Lakshmikantham and R. Agarwal, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993. · Zbl 0785.34003
[21] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Amsterdam, 1992. · Zbl 0759.26012
[22] J. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl. 167 (1992), 98-100. · Zbl 0821.26014
[23] D. S. Mitrinovic, J. Pecaric, and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Springer, Netherlands, 2012.
[24] V. Maz’ya, Sobolev Spaces, Springer, Berlin Heidelberg, 2013.
[25] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), no. 1, 31-38. · Zbl 0236.26015
[26] V. Alvarez, D. Pestana, J. M. Rodríguez, and E. Romera, Weighted Sobolev spaces on curves, J. Approximation Theory 119 (2002), no. 1, 41-85. · Zbl 1019.46026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.