×

Statistical analysis of discretely sampled semilinear SPDEs: a power variation approach. (English) Zbl 07858456

Summary: Motivated by problems from statistical analysis for discretely sampled SPDEs, first we derive central limit theorems for higher order finite differences applied to stochastic processes with arbitrary finitely regular paths. These results are proved by using the notion of \(\Delta\)-power variations, introduced herein, along with the Hölder-Zygmund norms. Consequently, we prove a new central limit theorem for \(\Delta\)-power variations of the iterated integrals of a fractional Brownian motion. These abstract results, besides being of independent interest, in the second part of the paper are applied to estimation of the drift and volatility coefficients of semilinear stochastic partial differential equations in dimension one, driven by an additive Gaussian noise white in time and possibly colored in space. In particular, we solve the earlier conjecture from Cialenco et al. (Stat. Inference Stoch. Process. 23:83-103, 2020) about existence of a nontrivial bias in the estimators derived by naive approximations of derivatives by finite differences. We give an explicit formula for the bias and derive the convergence rates of the corresponding estimators. Theoretical results are illustrated by numerical examples.

MSC:

62M05 Markov processes: estimation; hidden Markov models
62G05 Nonparametric estimation
62F12 Asymptotic properties of parametric estimators
60F05 Central limit and other weak theorems
60H15 Stochastic partial differential equations (aspects of stochastic analysis)

References:

[1] Altmeyer, R.; Bretschneider, T.; Janák, J.; Reiß, M., Parameter estimation in an SPDE model for cell repolarization, SIAM/ASA J. Uncertain. Quantif., 10, 1, 179-199, 2022 · Zbl 1523.35309 · doi:10.1137/20M1373347
[2] Altmeyer, R., Cialenco, I., Pasemann, G.: Parameter estimation for semilinear SPDEs from local measurements. Forthcoming in Bernoulli (2022)+ · Zbl 1531.60039
[3] Adams, RA; Fournier, JJF, Sobolev Spaces, Volume 140 of Pure and Applied Mathematics (Amsterdam), 2003, Amsterdam: Elsevier/Academic Press, Amsterdam · Zbl 1098.46001
[4] Bibinger, M.; Trabs, M.; Steland, A.; Rafajłowicz, E.; Okhrin, O., On central limit theorems for power variations of the solution to the stochastic heat equation, Stochastic Models. Statistics and Their Applications, 69-84, 2019, Cham: Springer, Cham · Zbl 1434.60064 · doi:10.1007/978-3-030-28665-1_5
[5] Bibinger, M.; Trabs, M., Volatility estimation for stochastic PDEs using high-frequency observations, Stoch. Process. Appl., 130, 5, 3005-3052, 2020 · Zbl 1462.60082 · doi:10.1016/j.spa.2019.09.002
[6] Cialenco, I.; Delgado-Vences, F.; Kim, H-J, Drift estimation for discretely sampled SPDEs, Stoch. PDE Anal. Comput., 8, 895-920, 2020 · Zbl 1455.60081 · doi:10.1007/s40072-019-00164-4
[7] Cialenco, I.; Glatt-Holtz, N., Parameter estimation for the stochastically perturbed Navier-Stokes equations, Stoch. Process. Appl., 121, 4, 701-724, 2011 · Zbl 1217.60052 · doi:10.1016/j.spa.2010.12.007
[8] Cialenco, I.; Huang, Y., A note on parameter estimation for discretely sampled SPDEs, Stoch. Dyn., 20, 3, 2050016, 2020 · Zbl 1451.60063 · doi:10.1142/S0219493720500161
[9] Chong, C.: High-frequency analysis of parabolic stochastic PDEs with multiplicative noise: part I. Preprint. arXiv:1908.04145 (2019)
[10] Chong, C., High-frequency analysis of parabolic stochastic PDEs, Ann. Stat., 48, 2, 1143-1167, 2020 · Zbl 1450.62122 · doi:10.1214/19-AOS1841
[11] Cialenco, I., Statistical inference for SPDEs: an overview, Stat. Infer. Stoch. Process., 21, 2, 309-329, 2018 · Zbl 1394.60067 · doi:10.1007/s11203-018-9177-9
[12] Cialenco, I.; Kim, H-J, Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise, Stoch. Process. Appl., 143, 1-30, 2022 · Zbl 1486.60075 · doi:10.1016/j.spa.2021.09.012
[13] Cialenco, I.; Kim, H-J; Lototsky, SV, Statistical analysis of some evolution equations driven by space-only noise, Stat. Infer. Stoch. Process., 23, 1, 83-103, 2020 · Zbl 1436.62085 · doi:10.1007/s11203-019-09205-0
[14] Coeurjolly, J-F, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths, Stat. Inference Stoch. Process, 4, 2, 199-227, 2001 · doi:10.1023/A:1017507306245
[15] Dalang, R., Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E.’s, Electron. J. Probab., 4, 6, 1-29, 1999 · Zbl 0922.60056
[16] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions, Volume 152 of Encyclopedia of Mathematics and Its Applications, 2014, Cambridge: Cambridge University Press, Cambridge · Zbl 1317.60077 · doi:10.1017/CBO9781107295513
[17] Giné, E.; Nickl, R., Mathematical Foundations of Infinite-Dimensional Statistical Models, 2015, Cambridge: Cambridge University Press, Cambridge · Zbl 1358.62014 · doi:10.1017/CBO9781107337862
[18] Hildebrandt, F., Trabs, M.: Nonparametric calibration for stochastic reaction-diffusion equations based on discrete observations. Preprint. arXiv:2102.13415 (2021) · Zbl 1518.60028
[19] Hildebrandt, F.; Trabs, M., Parameter estimation for SPDEs based on discrete observations in time and space, Electron. J. Stat., 15, 1, 2716-2776, 2021 · Zbl 1471.62276 · doi:10.1214/21-EJS1848
[20] Istas, J.; Lang, G., Quadratic variations and estimation of the local Hölder index of a gaussian process, Ann. Inst. H. Poincaré Probab. Stat., 33, 4, 407-436, 1997 · Zbl 0882.60032 · doi:10.1016/S0246-0203(97)80099-4
[21] Khalil, ZM; Tudor, C., Estimation of the drift parameter for the fractional stochastic heat equation via power variation, Mod. Stoch. Theory Appl., 6, 4, 397-417, 2019 · Zbl 1458.60043 · doi:10.15559/19-VMSTA141
[22] Khalil, ZM; Tudor, C., On the distribution and q-variation of the solution to the heat equation with fractional Laplacian, Probab. Math. Stat., 39, 2, 315-335, 2019 · Zbl 1447.60065 · doi:10.19195/0208-4147.39.2.5
[23] Kaino, Y.; Uchida, M., Parametric estimation for a parabolic linear SPDE model based on sampled data, J. Stat. Plan. Inference, 211, 190-220, 2021 · Zbl 1455.62055 · doi:10.1016/j.jspi.2020.05.004
[24] Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, MM; Ainsworth, M.; Karniadakis, GE, What is the fractional Laplacian? a comparative review with new results, J. Comput. Phys., 404, 109009, 2020 · Zbl 1453.35179 · doi:10.1016/j.jcp.2019.109009
[25] Liu, W.; Röckner, M., Stochastic Partial Differential Equations: An Introduction, 2015, Cham: Springer, Cham · Zbl 1361.60002 · doi:10.1007/978-3-319-22354-4
[26] Lototsky, SV; Rozovsky, BL, Stochastic Partial Differential Equations, 2017, New York: Springer, New York · Zbl 1375.60010 · doi:10.1007/978-3-319-58647-2
[27] Nourdin, I.; Nualart, D.; Tudor, C., Central and non-central limit theorems for weighted power variations of fractional Brownian motion, Ann. Inst. Henri Poincaré, 46, 4, 1055-1079, 2010 · Zbl 1221.60031 · doi:10.1214/09-AIHP342
[28] Nourdin, I.; Peccati, G., Normal Approximations with Malliavin Calculus, From Stein’s Method to Universality, Volume 192 of Cambridge Tracts in Mathematics, 2012, Cambridge: Cambridge University Press, Cambridge · Zbl 1266.60001
[29] Pasemann, G.; Flemming, S.; Alonso, S.; Beta, C.; Stannat, W., Diffusivity estimation for activator-inhibitor models: Theory and application to intracellular dynamics of the actin cytoskeleton, J. Nonlinear Sci., 31, 59, 1432-1467, 2021 · Zbl 1469.60207
[30] Picard, J.; Donati-Martin, C.; Lejay, A.; Rouault, A., Representation formulae for the fractional brownian motion, Séminaire de Probabilités XLIII, 3-70, 2011, Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1221.60050 · doi:10.1007/978-3-642-15217-7_1
[31] Piterbarg, LI; Rozovskii, BL, On asymptotic problems of parameter estimation in stochastic PDE’s: discrete time sampling, Math. Methods Stat., 6, 2, 200-223, 1997 · Zbl 0884.65140
[32] Pasemann, G.; Stannat, W., Drift estimation for stochastic reaction-diffusion systems, Electron. J. Stat., 14, 1, 547-579, 2020 · Zbl 1436.62438 · doi:10.1214/19-EJS1665
[33] Pospíšil, J.; Tribe, R., Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise, Stoch. Anal. Appl., 25, 3, 593-611, 2007 · Zbl 1118.60030 · doi:10.1080/07362990701282849
[34] Shevchenko, R.; Slaoui, M.; Tudor, C., Generalized k-variations and Hurst parameter estimation for the fractional wave equation via malliavin calculus, J. Stat. Plan. Inference, 207, 155-180, 2020 · Zbl 1456.60089 · doi:10.1016/j.jspi.2019.10.008
[35] Triebel, H., Theory of Function Spaces. II, Volume 84 of Monographs in Mathematics, 1992, Basel: Birkhäuser Verlag, Basel · Zbl 0763.46025
[36] Tudor, C., Analysis of Variations for Self-similar Processes. Probability and Its Applications (New York), 2013, Cham: Springer, Cham · Zbl 1308.60004 · doi:10.1007/978-3-319-00936-0
[37] van der Vaart, AW, Asymptotic Statistics, 1998, Cambridge: Cambridge University Press, Cambridge · Zbl 0943.62002 · doi:10.1017/CBO9780511802256
[38] Zygmund, A., Smooth functions, Duke Math. J., 12, 1, 47-76, 1945 · Zbl 0060.13806 · doi:10.1215/S0012-7094-45-01206-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.