×

Nonintegrability of dissipative planar systems. (English) Zbl 07855421

Summary: We consider dissipative autonomous perturbations of planar Hamiltonian systems and give a sufficient condition for them not to be complex-meromorphically Bogoyavlenskij-integrable such that the first integral or commutative vector field also depends complex-meromorphically on the small parameter. We illustrate the theoretical result for three examples including systems with the Morse potential and effective potential of the Kepler problem.

MSC:

37J30 Obstructions to integrability for finite-dimensional Hamiltonian and Lagrangian systems (nonintegrability criteria)
12H05 Differential algebra
70F05 Two-body problems
Full Text: DOI

References:

[1] Bogoliubov, N. N.; Mitropolsky, Y. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, 1961, Gordon & Breach: Gordon & Breach New York · Zbl 0151.12201
[2] Hayashi, C., Nonlinear Oscillations in Physical Systems, 1964, McGraw-Hill: McGraw-Hill New York · Zbl 0192.50605
[3] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations, 1979, John Wiley and Sons: John Wiley and Sons New York · Zbl 0418.70001
[4] Hale, J. K., Ordinary Differential Equations, 1980, Robert E. Krieger: Robert E. Krieger Malabar, FL · Zbl 0433.34003
[5] Murdock, J. A., Perturbations: Theory and Methods, 1991, John-Wiley & Sons: John-Wiley & Sons New York · Zbl 0810.34047
[6] Zhang, X., Integrability of Dynamical Systems: Algebra and Analysis, 2017, Springer: Springer Singapore · Zbl 1373.37053
[7] Bogoyavlenskij, O. I., Extended integrability and bi-Hamiltonian systems, Comm. Math. Phys., 196, 19-51, 1998 · Zbl 0931.37028
[8] Arnold, V. I., Mathematical Methods of Classical Mechanics, 1989, Springer: Springer New York · Zbl 0692.70003
[9] Morales-Ruiz, J. J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, 1999, Birkhäuser: Birkhäuser Basel · Zbl 0934.12003
[10] Morales-Ruiz, J. J.; Ramis, J.-P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal., 8, 33-96, 2001 · Zbl 1140.37352
[11] Morales-Ruiz, J. J.; Ramis, J.-P.; Simó, C., Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Suppl., 40, 845-884, 2007 · Zbl 1144.37023
[12] Maciejewski, A.; Przybylska, M., Differential Galois theory and integrability, Int. J. Geom. Methods Mod. Phys., 6, 1357-1390, 2009 · Zbl 1192.37083
[13] Morales-Ruiz, J. J.; Ramis, J.-P., Integrability of dynamical systems through differential Galois theory: A practical guide, (Acosta-Humánes, P. B.; Marcellaán, F., Differential Algebra, Complex Analysis and Orthogonal Polynomials, 2010, Mathematical Society: Mathematical Society Providence, RI), 143-200 · Zbl 1294.37024
[14] Morales-Ruiz, J. J., Picard-Vessiot theory and integrability, J. Geom. Phys., 87, 314-343, 2015 · Zbl 1372.12006
[15] Acosta-Humánez, P.; Lazaro, J. T.; Morales-Ruiz, J. J.; Pantazi, C., Differential Galois theory and non-integrability of planar polynomial vector fields, J. Differential Equations, 264, 7183-7212, 2018 · Zbl 1414.12009
[16] Acosta-Humánez, P. B.; Yagasaki, K., Nonintegrability of the unfoldings of codimension-two bifurcations, Nonlinearity, 33, 1366-1387, 2020 · Zbl 1439.37053
[17] Yagasaki, K., Nonintegrability of dynamical systems near degenerate equilibria, Comm. Math. Phys., 398, 1129-1152, 2023 · Zbl 1518.34004
[18] Yagasaki, K., Nonintegrability of truncated Poincaré-Dulac normal forms of resonance degree two, J. Differential Equations, 373, 526-563, 2023 · Zbl 1531.37047
[19] Yagasaki, K., Nonintegrability of nearly integrable dynamical systems near resonant periodic orbits, J. Nonlinear Sci., 32, 43, 2022 · Zbl 1497.37063
[20] Motonaga, S.; Yagasaki, K., Obstructions to integrability of nearly integrable dynamical systems near regular level sets, Arch. Ration. Mech. Anal., 247, 44, 2023 · Zbl 1525.37056
[21] Yagasaki, K., Nonintegrability of time-periodic perturbations of single-degree-of-freedom Hamiltonian systems near homo- and heteroclinic orbits, 2022, arXiv:2205.04803 [math.DS], submitted for publication
[22] Motonaga, S.; Yagasaki, K., Nonintegrability of forced nonlinear oscillators, Jpn. J. Ind. Appl. Math, 41, 151-164, 2024 · Zbl 07791025
[23] Motonaga, S., Subharmonic Melnikov functions and nonintegrability for autonomous and non-autonomous perturbations of single-degree-freedom Hamiltonian systems near periodic orbits, Physica D, 2024, in press
[24] Landau, L. D.; Lifshitz, E. M., (Quantum Mechanics: Non-Relativistic Theory. Quantum Mechanics: Non-Relativistic Theory, Course of Theoretical Physics, vol. 3, 1965, Pergamon Press: Pergamon Press Oxford) · Zbl 0178.57901
[25] Yuan, J.-M., Dissipative classical and quantum dynamics: the Morse oscillator, (Bai-Lin, H., Directions in Chaos, Vol. 1, 1987, World Scientific: World Scientific Singapore), 164-205
[26] Jing, Z.; Deng, J.; Yang, J., Bifurcations of periodic orbits and chaos in damped and driven Morse oscillator, Chaos Solitons Fractals, 35, 486-505, 2008 · Zbl 1141.37035
[27] Krajňák, V.; Wiggins, S., Dynamics of the Morse oscillator: analytical expressions for trajectories, action-angle variables, and chaotic dynamics, Int. J. Bifur. Chaos, 29, Article 1950157 pp., 2019 · Zbl 1433.37062
[28] Landau, L. D.; Lifshitz, E. M., (Mechanics. Mechanics, Course of Theoretical Physics, vol. 1, 1976, Pergamon Press: Pergamon Press Oxford)
[29] Yagasaki, K., The Melnikov theory for subharmonics and their bifurcations in forced oscillations, SIAM J. Appl. Math., 56, 1720-1765, 1996 · Zbl 0867.34025
[30] Guckenheimer, J.; Holmes, P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 1983, Springer: Springer New York · Zbl 0515.34001
[31] K. Yagasaki, Non-integrability of the restricted three-body problem, Ergod. Theory Dynam. Syst. in press.
[32] Meyer, K. R.; Offin, D. C., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2017, 3rd ed. · Zbl 1372.70002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.