×

Streaming instability of electron-acoustic waves with nonextensive \(q\)-distributed electrons. (English) Zbl 07843056

Summary: The linear characteristics of electron-acoustic waves and associated kinetic instability are investigated in an unmagnetized electron-ion plasma containing streaming warm (hot) electrons, dynamical cool electrons and static background of the positive ions. The plasma under consideration is modeled by using a non-gyrotropic nonextensive q-distribution function in which the free energy source for wave excitation is provided by the relative directed motion of streaming warm electrons with respect to the cool electrons. In the frame work of kinetic theory, the Vlasov-Poisson equations are solved to derive the expressions for linear dispersion relation and Landau damping rate. The results are analyzed for threshold condition of wave dispersion and instability growth rate in the presence of nonextensive effects. The relevance of study to the observed situations is also described.

MSC:

82Dxx Applications of statistical mechanics to specific types of physical systems
82Bxx Equilibrium statistical mechanics
76Xxx Ionized gas flow in electromagnetic fields; plasmic flow
Full Text: DOI

References:

[1] Derfler, H.; Simonen, T. C., Higher-order Landau modes, Phys. Fluids, 12, 269, (1969) · Zbl 0181.57405
[2] Ikezawa, S.; Nakamura, Y., Observation of electron plasma waves in plasma of two-temperature electrons, J. Phys. Soc. Japan, 50, 962-967, (1981)
[3] Fried, B. D.; Gould, R. W., Longitudinal ion oscillations in a hot plasma, Phys. Fluids, 4, 139, (1961)
[4] Watanabe, K.; Taniuti, T. J., Electron-acoustic mode in a plasma of two-temperature electrons, Phys. Soc. Japan, 43, 1819-1820, (1977)
[5] Gary, S. P.; Tokar, R. L., The electron-acoustic mode, Phys. Fluids, 28, 2439, (1985)
[6] Duouloz, N.; Pottelette, R.; Malingre, M.; Holmgren, G.; Lindqvist, P. A., Detailed analysis of broadband electrostatic noise in the dayside auroral zone, J. Geophys. Res., 96, 3565-3579, (1991)
[7] Tokar, R. L.; Gary, S. P., Electrostatic hiss and the beam driven electron acoustic instability in the dayside polar cusp, Geophys. Res. Lett., 11, 1180-1183, (1984)
[8] Dubouloz, N.; Treumann, R.; Pottelette, R.; Malingre, M. J., Turbulence generated by a gas of electron acoustic solitons, Geophys. Res., 98, 17415-17422, (1993)
[9] Mozer, F. S.; Ergun, R.; Temerin, M.; Catte, C. I.; Dombeck, J.; Wygant, J., New features of time domain electric-field structures in the auroral acceleration region, Phys. Rev. Lett., 79, 1281, (1997)
[10] Ergun, R. E.; Carlson, C. W.; McFadden, J. P.; Mozer, F. S.; Delory, G. T.; Peria, W.; Chaston, C. C.; Temerin, M.; Roth, I.; Muschietti, L.; Elphic, R.; Strangeway, R.; Pfaff, R.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L., FAST satellite observations of large-amplitude solitary structures, Geophys. Res. Lett., 25, 2041-2044, (1998)
[11] Pottelette, R.; Ergun, R. E.; Treumann, R. A.; Berthomier, M.; Carlson, C. W.; McFadden, J. P.; Roth, I., Modulated electron acoustic waves in Auroral density cavities: Fast observations, Geophys. Res. Lett., 26, 2629-2632, (1999)
[12] Mace, R. L., Arbitrary-amplitude electron-acoustic solitons in a two-electron-component plasma, J. Plasma Phys., 45, 323-338, (1991)
[13] Gary, S. P., The electron/electron acoustic instability, Phys. Fluids, 30, 2745-2749, (1987)
[14] Singh, S. V.; Lakhina, G. S., Generation of electron-acoustic waves in the magnetosphere, Planet. Space Sci., 49, 107-114, (2001)
[15] Anderegg, F.; Driscoll, C. F.; Dubin, D. H.E.; O’Neil, T. M., Wave-particle interactions in electron acoustic waves in pure ion plasmas, Phys. Rev. Lett., 102, Article 095001 pp., (2009)
[16] Chakrabarti, N.; Sengupta, S., Nonlinear interaction of electron plasma waves with electron acoustic waves in plasmas, Phys. Plasmas, 16, Article 072311-072311-4, (2009)
[17] Baluku, T. K.; Hellberg, M. A.; Mace, R. L., Electron acoustic waves in double-plasmas: Application to Saturn’s magnetosphere, J. Geophys. Res., 116, A04227, (2011)
[18] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479-487, (1988) · Zbl 1082.82501
[19] Tsallis, C., (Moran-Lopez, J. L.; Sanchez, J. M., New Trends in Magnetism, Magnetic Materials and their Applications, (1994), Plenum Press: Plenum Press New York)
[20] Lima, J. A.S.; Silva, R.; Santos, J., Plasma oscillations and nonextensive statistics, Phys. Rev. E, 61, 3260, (2000)
[21] Liu, J. M.; Groot, J. S.D.; Matte, J. P.; Johnston, T. W.; Drake, R. P., Measurements of inverse bremsstrahlung absorption and non-Maxwellian electron velocity distributions, Phys. Rev. Lett., 72, 2717, (1994)
[22] Chen, X. C.; Li, X. Q., Comment on plasma oscillations and nonextensive statistics, Phys. Rev. E, 86, 068401-068405, (2012)
[23] Saberian, E.; Kalejahi, A. E., Langmuir oscillations in a nonextensive electron-positron plasma, Phys. Rev. E, 87, 053112-053121, (2013)
[24] Du, J. L., Nonextensivity in nonequilibrium plasma systems with Colombian long-range interactions, Phys. Lett. A, 329, 262-267, (2004) · Zbl 1209.82039
[25] Du, J. L., The nonextensive parameter and Tsallis distribution for self-gravitating systems, Europhys. Lett., 67, 893, (2004)
[26] Safa, N. N.; Ghomi, H.; Niknam, A. R., Plasma immersion ion implantation characteristics with q-nonextensive electron velocity distribution, J. Plasma Phys., 81, Article 905810303 pp., (2015)
[27] Beck, C., Dynamical foundations of nonextensive statistical mechanics, Phys. Rev. Lett., 87, 180601-180604, (2001)
[28] Boghosian, B. M., Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics, Phys. Rev. E, 53, 4754-4763, (1996)
[29] Tsallis, C.; Souza, A. M.C., Nonlinear inverse bremsstrahlung absorption and nonextensive thermostatistics, Phys. Lett. A, 235, 444-446, (1997)
[30] Lavagno, L.; Kaniadakis, G.; Monteiro, M. R.; Quarati, P.; Tsallis, C., Non-extensive thermostatistical approach of the peculiar velocity function of galaxy clusters, Astrophys. Lett. Commun., 35, 449-455, (1998)
[31] Silva, R.; Plastino, A. R.; Lima, J. A.S., A Maxwellian path to the q-nonextensive velocity distribution function, Phys. Lett. A, 249, 401-408, (1998) · Zbl 0940.82028
[32] Curado, E. M.F., Nonextensive statistics: Theoretical, experimental and computational evidences and connections, Braz. J. Phys., 29, 36, (1999)
[33] Munoz, V., A nonextensive statistics approach for Langmuir waves in relativistic plasmas, Nonlinear Process. Geophys., 13, 237-241, (2006)
[34] Silva, R.; Alcaniz, J. A.; Lima, J. A.S., Constraining nonextensive statistics with plasma oscillation data, Physica A, 356, 509-516, (2005)
[35] Shaikh, S.; Khan, A.; Bhatia, P. K., Jean’s gravitational instability of a thermally conducting plasma, Phys. Lett. A, 372, 1451-1457, (2008) · Zbl 1217.76099
[36] Valentini, F., Nonlinear Landau damping in nonextensive statistics, Phys. Plasmas, 12, Article 072106 pp., (2005)
[37] Bukhari, S.; Hussain, N.; Ali, S., Unstable mode of ion-acoustic waves with two temperature q-nonextensive distributed electrons, Chin. Phys. B., 9, 095202-095205, (2021)
[38] Gurnett, D. A.; Bhattacharjee, A., Introduction to Plasma Physics with Space and Laboratory Applications, (2005), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1376.82002
[39] Arfken, G., Mathematical Methods for Physicists, 311-315, (1970), Academic Press: Academic Press New York
[40] Rehman, A.; Ali, S.; Khan, S. A.; Shahzad, K., Twisted electron-acoustic waves in plasmas, Phys. Plasmas, 23, Article 082122 pp., (2016)
[41] Schippers, P., Multi-instrument analysis of electron populations in Saturn’s magnetosphere, J. Geophys. Res., 113, A07208, (2008)
[42] Koen, E. J.; Collier, A. B.; Maharaj, S. K.; Hellberg, M. A., Particle-in-cell simulations of ion-acoustic waves with application to Saturn’s magnetosphere, Phys. Plasmas, 21, Article 072122 pp., (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.