×

Solitons in \(\mathcal{PT}\)-symmetric systems with spin-orbit coupling and critical nonlinearity. (English) Zbl 07840925

In this paper, the authors establish a class of one-dimensional (1D) stable solitons in two-component \(\mathcal{PT}\)-symmetric systems with spin-orbit coupling (SOC) and quintic nonlinearity, which models light propagation in a dual-core waveguide with skewed coupling between the cores are identified in the system’s parameter space. The authors determined the stability regions of the solitons in the system’s parameter space, and the main semi-infinite gap, and an additional finite annex gap. Also, stability boundaries are discovered by means of simulations of the perturbed evolution, which agree with results produced by the linear stability analysis for small perturbations. Moreover, distinct evolution scenarios are obtained for unstable solitons; stationary solitons are also found beyond the exceptional point, at which the \(\mathcal{PT}\) symmetry breaks down, interactions between adjacent solitons are explored too, featuring rebound or merger followed by blowup. Furthermore, slowly moving (tilted) solitons and fast ones develop different oscillations, and stability; the reduced diffractionless system, creates only unstable solitons. Some previous related results are improved and extended.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
78A60 Lasers, masers, optical bistability, nonlinear optics
78A50 Antennas, waveguides in optics and electromagnetic theory
35B06 Symmetries, invariants, etc. in context of PDEs
35B35 Stability in context of PDEs
35B20 Perturbations in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35B44 Blow-up in context of PDEs
35C08 Soliton solutions

References:

[1] Longhi, S., Quantum-optical analogies using photonic structures, Laser Photonics Rev, 3, 243-261, 2009
[2] Leyder, C.; Romanelli, M.; Karr, J. P.; Giacobino, E.; Liew, T. C.H.; Glazov, M. M.; Kavokin, A. V.; Malpuech, G.; Bramati, A., Observation of the optical spin Hall effect, Nat Phys, 3, 628-631, 2007
[3] Rechtsman, M. C.; Zeuner, J. M.; Plotnik, Y.; Lumer, Y.; Podolsky, D.; Dreisow, F.; Nolte, S.; Segev, M.; Szameit, A., Photonic Floquet topological insulators, Nature, 496, 196-200, 2013
[4] Leonhardt, U.; Piwnicki, P., Optics of nonuniformly moving media, Phys Rev A, 60, 4301, 1999
[5] Bender, C. M., Rep. Making sense of non-Hermitian Hamiltonians, Prog Phys, 70, 947, 2007
[6] Ruschhaupt, A.; Delgado, F.; Muga, J. G., Physical realization of-symmetric potential scattering in a planar slab waveguide, J Phys A: Math Gen, 38, L171, 2005 · Zbl 1073.81073
[7] El-Ganainy, R.; Makris, K. G.; Christodoulides, D. N.; Musslimani, Z. H., Theory of coupled optical PT-symmetric structures, Opt Lett, 32, 2632, 2007
[8] Berry, M. V.J., Optical lattices with \(\mathcal{PT}\) symmetry are not transparent, Phys A: Math Theor, 41, Article 244007 pp., 2008 · Zbl 1140.81471
[9] Klaiman, S.; Günther, U.; Moiseyev, N., Visualization of branch points in \(\mathcal{PT} \)-symmetric waveguides, Phys Rev Lett, 101, Article 080402 pp., 2008 · Zbl 1228.81164
[10] Longhi, S., Bloch oscillations in complex crystals with symmetry, Phys Rev Lett, 103, Article 123601 pp., 2009
[11] Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.; Musslimani, Z. H., \( \mathcal{PT} \)-Symmetric periodic optical potentials, Internat J Theoret Phys, 50, 1019, 2011 · Zbl 1215.81036
[12] Suchkov, S. V.; Sukhorukov, A. A.; Huang, J.; Dmitriev, S. V.; Lee, C.; Kivshar, Y. S., Nonlinear switching and solitons in \(\mathcal{PT} \)-symmetric photonic, Laser Photon Rev, 10, 177, 2016
[13] Konotop, V. V.; Yang, J.; Zezyulin, D. A., Nonlinear waves in \(\mathcal{PT} \)-symmetric systems, Rev Modern Phys, 88, Article 035002 pp., 2016
[14] Guo, A.; Salamo, G. J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G. A.; Christodoulides, D. N., Observation of \(\mathcal{PT} \)-symmetry breaking in complex optical potentials, Phys Rev Lett, 103, Article 093902 pp., 2009
[15] Rüter, C. E.; Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.; Segev, M.; Kip, D., Observation of parity-time symmetry in optics, Nat Phys, 6, 192-195, 2010
[16] Regensburger, A.; Bersch, C.; Miri, M.-A.; Onishchukov, G.; Christodoulides, D. N.; Peschel, U., Parity-time synthetic photonic lattices, Nature, 488, 167-171, 2012
[17] Bliokh, K. Y.; Rodriguez-Fortuno, F. J.; Nori, F.; Zayats, A. V., Spin-orbit interactions of light, Nature Photon, 9, 796, 2015
[18] Kartashov, Y. V.; Malomed, B. A.; Konotop, V. V.; Lobanov, V. E.; Torner, L., Stabilization of solitons in bulk Kerr media by dispersive coupling, Opt Lett, 40, 1045-1048, 2015
[19] Sakaguchi, H.; Malomed, B. A., One- and two-dimensional solitons in \(\mathcal{PT} \)-symmetric systems emulating spin-orbit coupling, New J Phys, 18, Article 105005 pp., 2016
[20] Lin, Y. J.; Jimenez-Garcia, K.; Spielman, I., Spin-orbit-coupled bose-einstein condensates, Nature, 471, 83-86, 2011
[21] Galitski, V.; Spielman, I. B., Spin-orbit coupling in quantum gases, Nature, 494, 49, 2013
[22] Goldman, N.; Juzeliũnas, G.; Öhberg, P.; Spielman, IB., Light-induced gauge fields for ultracold atoms, Rep Progr Phys, 77, Article 126401 pp., 2014
[23] Zhai, H., Degenerate quantum gases with spin-orbit coupling: a review, Rep Progr Phys, 78, Article 026001 pp., 2015
[24] Malomed, B. A., Creating solitons by means of spin-orbit coupling, Europhys Lett, 122, 3600, 2018
[25] Wu, M. W.; Jiang, J. H.; Weng, M. Q., Spin dynamics in semiconductors, Phys Rep, 493, 61-236, 2010
[26] Manchon, A.; Koo, H. C.; Nitta, J.; Frolov, S. M.; Duine, R. A., New perspectives for Rashba spin-orbit coupling, Nature Mater, 14, 871-882, 2015
[27] Ding, K.; Ma, G. C.; Xiao, M.; Zhang, Z. Q.; Chan, C. T., Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization, Phys Rev X, 6, Article 021007 pp., 2016
[28] Miri, M. A.; Alù, A., Exceptional points in optics and photonics, Science, 363, 43, 2019 · Zbl 1431.78001
[29] Ozdemir, S. K.; Rotter, S.; Nori, F.; Yang, L., Parity-time symmetry and exceptional points in photonics, Nature Mater, 18, 783-798, 2019
[30] GI, Wright. EM. Stegeman.; Wabnitz, S., Solitary-wave decay and symmetry-breaking instabilities in two-mode fibers, Phys Rev A, 40, 4455, 1989
[31] Romagnoli, M.; Trillo, S.; Wabnitz, S., Soliton switching in nonlinear couplers, Opt Quantum Electron, 24, S1237-S1267, 1992
[32] Malomed, B. A., A variety of dynamical settings in dual-core nonlinear fibers, (Peng, G.-D., Handbook of optical fibers, vol. 1, 2019, Springer: Springer Singapore), 421-474
[33] Driben, R.; Malomed, B. A., Stability of solitons in parity-time-symmetric couplers, Opt Lett, 36, 4323-4325, 2011
[34] Driben, R.; Malomed, B. A., Stabilization of solitons in \(\mathcal{PT}\) models with supersymmetry by periodic management, Europhys Lett, 96, 51001, 2011
[35] Alexeeva, N. V.; Barashenkov, I. V.; Sukhorukov, A. A.; Kivshar, Y. S., Optical solitons in \(\mathcal{PT} \)-symmetric nonlinear couplers with gain and loss, Phys Rev A, 85, Article 063837 pp., 2012
[36] Burlak, G.; Malomed, B. A., Stability boundary and collisions of two-dimensional solitons in \(\mathcal{PT} \)-symmetric couplers with the cubic-quintic nonlinearity, Phys Rev E, 88, Article 062904 pp., 2013
[37] Chen, Z.; Liu, J.; Fu, S.; Li, Y.; Malomed, B. A., Discrete solitons and vortices on two-dimensional lattices of \(\mathcal{PT} \)-symmetric couplers, Opt Express, 22, 24, 29679-29692, 2014
[38] Burlak, G.; Garcia-Paredes, S.; Malomed, B. A., \( \mathcal{PT} \) -Symmetric couplers with competing cubic-quintic nonlinearities, Chaos, 26, Article 113103 pp., 2016
[39] Z, Fan.; Malomed, B. A., Dynamical control of solitons in a parity-time-symmetric coupler by periodic management, Commun Nonlinear Sci Numer Simul, 79, Article 104906 pp., 2019 · Zbl 1510.78048
[40] Shamriz, E.; Chen, Z.; Malomed, B. A., Stabilization of one-dimensional Townes solitons by spin-orbit coupling in a dual-core system, Commun Nonlinear Sci Numer Simul, 91, Article 105412 pp., 2020 · Zbl 1464.35291
[41] Bergé, L., Wave collapse in physics: principles and applications to light and plasma waves, Phys Rep, 303, 259-372, 1998
[42] Sulem, C.; Sulem, P. L., The nonlinear Schrödinger equation: self-focusing and wave collapse, 1999, Springer: Springer New York · Zbl 0928.35157
[43] Fibich, G., The nonlinear Schrödinger equation: singular solutions and optical collapse, 2015, Springer: Springer Heidelberg · Zbl 1351.35001
[44] Chiao, R. Y.; Garmire, E.; Townes, C. H., Self-trapping of optical beams, Phys Rev Lett, 13, 479-482, 1964
[45] Abdullaev, F. K.; Salerno, M., Gap-townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices, Phys Rev A, 72, Article 033617 pp., 2005
[46] Senthilnathan, K.; Li, Q.; Nakkeeran, K.; Wai, PKA., Robust pedestal-free pulse compression in cubic-quintic nonlinear media, Phys Rev A, 78, Article 033835 pp., 2008
[47] Mihalache, D.; Mazilu, D.; Crasovan, L. C.; Towers, I.; Malomed, B. A.; Buryak, A. V.; Torner, L.; Lederer, F., Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities, Phys Rev E, 66, 13, 2002
[48] Mardonov, S.; Sherman, E. Y.; Muga, J. G.; Wang, H. W.; Ban, Y.; Chen, X., Collapse of spin-orbit-coupled Bose-Einstein condensates, Phys Rev A, 91, Article 043604 pp., 2015
[49] Sakaguchi, H.; Li, B.; Malomed, B. A., Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space, Phys Rev E, 89, Article 032920 pp., 2014
[50] Reyna, A. S.; de Araújo, C. B., High-order optical nonlinearities in plasmonic nanocomposites – a review, Adv Opt Phot, 9, 720-774, 2017
[51] Alexeeva, N. V.; Barashenkov, I. V.; Saxena, A., Spinor solitons and their \(\mathcal{PT} \)-symmetric offspring, Ann Physics, 403, 198-223, 2019 · Zbl 1411.81114
[52] J, Yang.; I, Lakoba. T., Accelerated imaginary-time evolution methods for the computation of solitary waves, Stud Appl Math, 120, Article 265292 pp., 2008 · Zbl 1191.35227
[53] Yang, J., Nonlinear waves in integrable and non-integrable systems, 2010, SIAM: SIAM Philadelphia · Zbl 1234.35006
[54] Barashenkov, I. V.; Zemlyanaya, E. V., Existence threshold for the AC-driven damped nonlinear Schrodinger solitons, Physica D, 132, 363-372, 1999 · Zbl 0932.35187
[55] Barashenkov, I. V.; Woodford, S. R., Complexes of stationary domain walls in the resonantly forced Ginsburg-Landau equation, Phys Rev E, 71, Article 026613 pp., 2005
[56] Barashenkov, I. V.; Zemlyanaya, E. V., Travelling solitons in the externally driven nonlinear Schrödinger equation, J Phys A, 44, Article 465211 pp., 2011 · Zbl 1230.35124
[57] Alexeeva, N. V.; Barashenkov, I. V.; Kivshar, Y. C., Solitons in PT-symmetric ladders of optical waveguides, New J Phys, 19, Article 113032 pp., 2017 · Zbl 1516.78011
[58] Cartarius, H.; Haag, D.; Dast, D.; Wunner, G., Nonlinear Schrödinger equation for a \(\mathcal{PT} \)-symmetric delta-function double well, J Phys A, 45, Article 444008 pp., 2012 · Zbl 1282.35325
[59] Susanto, H.; Kusdiantara, R.; Li, N.; Kirikchi, O. B.; Adzkiya, D.; Putri, E. R.M.; Asfihani, T., Snakes and ghosts in a parity-time-symmetric chain of dimers, Phys Rev E, 97, Article 062204 pp., 2018
[60] YS, Kivshar.; Malomed, B. A., Dynamics of solitons in nearly integrable systems, Rev Modern Phys, 61, 763-915, 1989
[61] Malomed, B. A., Optical solitons and vortices in fractional media: A mini-review of recent results, Photonics, 8, 353, 2021
[62] Cao, Q. H.; Dai, C. Q., Symmetric and anti-symmetric solitons of the fractional second- and third-order nonlinear Schrödinger equation, Chin Phys Lett, 38, Article 090501 pp., 2021
[63] Raghuraman, P. J.; Baghya Shree, S.; Mani Rajan, M. S., Soliton control with inhomogeneous dispersion under the influence of tunable external harmonic potential, Waves Random Media, 31, 474-485, 2019 · Zbl 1520.78043
[64] Dai, C. Q.; Wang, Y. Y.; Zhang, J. F., Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials, Nonlinear Dynam, 102, 379-391, 2020
[65] Dai, C. Q.; Wang, Y. Y., Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals, Nonlinear Dynam, 102, 1733-1741, 2020
[66] Fang, Y.; Wu, G.-Z.; Wang, Y. Y.; Dai, C. Q., Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN, Nonlinear Dynam, 105, 603-616, 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.