×

Novel periodic and optical soliton solutions for Davey-Stewartson system by generalized Jacobi elliptic expansion method. (English) Zbl 07832183

Summary: As Davey-Stewartson system is considered one of the most important models in optics, quantum physics, plasmas, and Bose-Einstein condensates. In this study, we have solved the Davey-Stewartson system using a modified Jacobi elliptic function methodology, and therefore many novel Jacobi elliptic wave function solutions were obtained, which degenerated to hypergeometric functions and periodic functions. The results obtained in this paper are novel in addition, contain other results achieved before in literatures. Moreover, some dynamic behavior for the periodic, kink type, and soliton wave propagation is demonstrated.

MSC:

35-XX Partial differential equations
82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] M. H. M. Moussa and R. M. el Shikh, “Similarity Reduction and similarity solutions of Zabolotskay-Khoklov equation with a dissipative term via symmetry method,” Phys. Stat. Mech. Appl., vol. 371, pp. 325-335, 2006. doi:10.1016/j.physa.2006.04.044. · doi:10.1016/j.physa.2006.04.044
[2] M. H. M. Moussa and R. M. el Shikh, “Auto-Bäcklund transformation and similarity reductions to the variable coefficients variant Boussinesq system,” Phys. Lett. A, vol. 372, pp. 1429-1434, 2008. doi:10.1016/j.physleta.2007.09.056. · Zbl 1217.76022 · doi:10.1016/j.physleta.2007.09.056
[3] M. H. M. Moussa and R. M. El-Shiekh, “Similarity solutions for generalized variable coefficients zakharov-kuznetso equation under some integrability conditions,” Commun. Theor. Phys., vol. 54, pp. 603-608, 2010. doi:10.1088/0253-6102/54/4/04. · Zbl 1218.35214 · doi:10.1088/0253-6102/54/4/04
[4] M. H. M. Moussa and R. M. El-Shiekh, “Direct reduction and exact solutions for generalized variable coefficients 2D KdV equation under some integrability conditions,” Commun. Theor. Phys., vol. 55, pp. 551-554, 2011. doi:10.1088/0253-6102/55/4/03. · Zbl 1264.35198 · doi:10.1088/0253-6102/55/4/03
[5] M. H. M. Moussa, R. A. K. Omar, R. M. El-Shiekh, and H. R. El-Melegy, “Nonequivalent similarity reductions and exact solutions for coupled Burgers-type equations,” Commun. Theor. Phys., vol. 57, pp. 1-4, 2012. doi:10.1088/0253-6102/57/1/01. · Zbl 1247.35109 · doi:10.1088/0253-6102/57/1/01
[6] R. M. El-Shiekh, “New exact solutions for the variable coefficient modified KdV equation using direct reduction method,” Math. Methods Appl. Sci., vol. 36, pp. 1-4, 2013. doi:10.1002/mma.2561. · Zbl 1257.35163 · doi:10.1002/mma.2561
[7] R. M. El-Shiekh and A.-G. Al-Nowehy, “Integral methods to solve the variable coefficient nonlinear Schrödinger equation,” Z. Naturforsch. C, vol. 68, no. A, pp. 255-260, 2013. doi:10.5560/ZNA.2012-0108. · doi:10.5560/ZNA.2012-0108
[8] G. M. Moatimid, R. M. El-Shiekh, and A.-G. A. A. H. Al-Nowehy, “Exact solutions for Calogero-Bogoyavlenskii-Schiff equation using symmetry method,” Appl. Math. Comput., vol. 220, pp. 455-462, 2013. doi:10.1016/j.amc.2013.06.034. · Zbl 1329.35271 · doi:10.1016/j.amc.2013.06.034
[9] M. F. El-Sayed, G. M. Moatimid, M. H. M. Moussa, R. M. El-Shiekh, and A. A. El-Satar, “Symmetry group analysis and similarity solutions for the (2+1)-dimensional coupled Burger’s system,” Math. Methods Appl. Sci., vol. 37, pp. 1113-1120, 2014. doi:10.1002/mma.2870. · Zbl 1293.35014 · doi:10.1002/mma.2870
[10] M. F. El-Sayed, G. M. Moatimid, M. H. M. Moussa, R. M. El-Shiekh, F. A. H. El-Shiekh, and A. A. El-Satar, “A study of integrability and symmetry for the (p + 1)th Boltzmann equation via Painlevé analysis and Lie-group method,” Math. Methods Appl. Sci., vol. 38, pp. 3670-3677, 2015. doi:10.1002/mma.3307. · Zbl 1375.35299 · doi:10.1002/mma.3307
[11] R. M. El-Shiekh, “Direct similarity reduction and new exact solutions for the variable-coefficient Kadomtsev-Petviashvili equation,” Z. Naturforsch. A, vol. 70, pp. 445-450, 2015. doi:10.1515/zna-2015-0057. · doi:10.1515/zna-2015-0057
[12] R. M. El-Shiekh, “Periodic and solitary wave solutions for a generalized variable-coefficient Boiti-Leon-Pempinlli system,” Comput. Math. Appl., vol. 73, pp. 1414-1420, 2017. doi:10.1016/j.camwa.2017.01.008. · Zbl 1375.35072 · doi:10.1016/j.camwa.2017.01.008
[13] R. M. El-Shiekh, “Jacobi elliptic wave solutions for two variable coefficients cylindrical Korteweg-de Vries models arising in dusty plasmas by using direct reduction method,” Comput. Math. Appl., vol. 75, pp. 1676-1684, 2018. doi:10.1016/j.camwa.2017.11.031. · Zbl 1409.35181 · doi:10.1016/j.camwa.2017.11.031
[14] R. M. El-Shiekh, “Painlevé test, Bäcklund transformation and consistent Riccati expansion solvability for two generalised cylindrical Korteweg-de Vries equations with variable coefficients,” Z. Naturforsch. A, vol. 73, pp. 207-2013, 2018. doi:10.1515/zna-2017-0349. · doi:10.1515/zna-2017-0349
[15] R. M. El-Shiekh, “New similarity solutions for the generalized variable-coefficients KdV equation by using symmetry group method,” Arab J. Basic Appl. Sci., vol. 25, pp. 66-70, 2018. doi:10.1080/25765299.2018.1449343. · doi:10.1080/25765299.2018.1449343
[16] R. M. El-Shiekh, “Classes of new exact solutions for nonlinear Schrödinger equations with variable coefficients arising in optical fiber,” Results Phys., vol. 13, 2019. doi:10.1016/j.rinp.2019.102214. · doi:10.1016/j.rinp.2019.102214
[17] R. M. El-Shiekh and M. Gaballah, “Solitary wave solutions for the variable-coefficient coupled nonlinear Schrödinger equations and Davey-Stewartson system using modified sine-Gordon equation method,” J. Ocean Eng. Sci., vol. 5, pp. 180-185, 2020. doi:10.1016/j.joes.2019.10.003. · doi:10.1016/j.joes.2019.10.003
[18] R. M. El-Shiekh and M. Gaballah, “Novel solitons and periodic wave solutions for Davey-Stewartson system with variable coefficients,” J. Taibah Univ. Sci., vol. 14, pp. 783-789, 2020. doi:10.1080/16583655.2020.1774975. · doi:10.1080/16583655.2020.1774975
[19] R. M. El-Shiekh and M. Gaballah, “Bright and dark optical solitons for the generalized variable coefficients nonlinear Schrödinger equation,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 21, no. 7-8, pp. 675-681, 2020. doi:10.1515/ijnsns-2019-0054. · Zbl 07446861 · doi:10.1515/ijnsns-2019-0054
[20] R. M. El-Shiekh and M. Gaballah, “New rogon waves for the nonautonomous variable coefficients Schrödinger equation,” Opt. Quant. Electron., vol. 53, pp. 1-12, 2021. doi:10.1007/S11082-021-03066-9/FIGURES/3. · doi:10.1007/S11082-021-03066-9/FIGURES/3
[21] R. M. El-Shiekh, “Novel solitary and shock wave solutions for the generalized variable-coefficients (2+1)-dimensional KP-Burger equation arising in dusty plasma,” Chin. J. Phys., vol. 71, pp. 341-350, 2021. doi:10.1016/J.CJPH.2021.03.006. · Zbl 07835687 · doi:10.1016/J.CJPH.2021.03.006
[22] R. M. El-Shiekh and M. Gaballah, “New analytical solitary and periodic wave solutions for generalized variable-coefficients modified KdV equation with external-force term presenting atmospheric blocking in oceans,” J. Ocean Eng. Sci., 2021. doi:10.1016/J.JOES.2021.09.003. · doi:10.1016/J.JOES.2021.09.003
[23] Y. W. Zhao, J. W. Xia, and X. Lü, “The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system,” Nonlinear Dynam., vol. 108, pp. 1-11, 2022. doi:10.1007/S11071-021-07100-Z/FIGURES/11. · doi:10.1007/S11071-021-07100-Z/FIGURES/11
[24] Y. H. Yin, X. Lü, and W. X. Ma, “Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation,” Nonlinear Dynam., vol. 104, pp. 1-14, 2021. doi:10.1007/S11071-021-06531-Y/FIGURES/7. · doi:10.1007/S11071-021-06531-Y/FIGURES/7
[25] X.-J. He and X. Lü, “M-lump solution, soliton solution and rational solution to a (3+1)-dimensional nonlinear model,” Math. Comput. Simulat., vol. 197, pp. 327-340, 2022. doi:10.1016/J.MATCOM.2022.02.014. · Zbl 1540.35341 · doi:10.1016/J.MATCOM.2022.02.014
[26] S.-J. Chen and X. Lü, “Lump and lump-multi-kink solutions in the (3+1)-dimensions,” Commun. Nonlinear Sci. Numer. Simulat., vol. 109, p. 106103, 2022. doi:10.1016/J.CNSNS.2021.106103. · Zbl 1537.35022 · doi:10.1016/J.CNSNS.2021.106103
[27] Y.-H. Yin, S.-J. Chen, and X. Lü, “Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations,” Chin. Phys. B, vol. 29, p. 120502, 2020. doi:10.1088/1674-1056/ABA9C4. · doi:10.1088/1674-1056/ABA9C4
[28] S. J. Chen, X. Lü, M. G. Li, and F. Wang, “Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations,” Phys. Scripta, vol. 96, 2021, Art no. 095201. doi:10.1088/1402-4896/ABF307. · doi:10.1088/1402-4896/ABF307
[29] X. J. He, X. Lü, and M. G. Li, “Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3 + 1 ) -dimensional generalized Kadomtsev-Petviashvili equation,” Anal. Math. Phys., vol. 11, pp. 1-24, 2021. doi:10.1007/S13324-020-00414-Y/FIGURES/5. · Zbl 1456.35007 · doi:10.1007/S13324-020-00414-Y/FIGURES/5
[30] X. Lü and S. J. Chen, “Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types,” Nonlinear Dynam., vol. 103, pp. 947-977, 2021. doi:10.1007/S11071-020-06068-6/FIGURES/9. · Zbl 1516.35175 · doi:10.1007/S11071-020-06068-6/FIGURES/9
[31] X. Lü and S. J. Chen, “New general interaction solutions to the KPI equation via an optional decoupling condition approach,” Commun. Nonlinear Sci. Numer. Simulat., vol. 103, p. 105939, 2021. doi:10.1016/J.CNSNS.2021.105939. · Zbl 1478.35083 · doi:10.1016/J.CNSNS.2021.105939
[32] S. J. Chen, Y. H. Yin, W. X. Ma, and X. Lü, “Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation,” Anal. Math. Phys., vol. 9, pp. 2329-2344, 2019. doi:10.1007/S13324-019-00338-2/FIGURES/3. · Zbl 1448.35441 · doi:10.1007/S13324-019-00338-2/FIGURES/3
[33] Y. F. Hua, B. L. Guo, W. X. Ma, and X. Lü, “Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves,” Appl. Math. Model., vol. 74, pp. 184-198, 2019. doi:10.1016/J.APM.2019.04.044. · Zbl 1481.74408 · doi:10.1016/J.APM.2019.04.044
[34] S. J. Chen, X. Lü, and W. X. Ma, “Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 83, p. 105135, 2020. doi:10.1016/J.CNSNS.2019.105135. · Zbl 1456.35178 · doi:10.1016/J.CNSNS.2019.105135
[35] H. N. Xu, W. Y. Ruan, Yu-Zhang, and X. Lü, “Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior,” Appl. Math. Lett., vol. 99, p. 105976, 2020. doi:10.1016/J.AML.2019.07.007. · Zbl 1448.35459 · doi:10.1016/J.AML.2019.07.007
[36] J. W. Xia, Y. W. Zhao, and X. Lü, “Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev-Petviashvili equation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 90, p. 105260, 2020. doi:10.1016/J.CNSNS.2020.105260. · Zbl 1450.35115 · doi:10.1016/J.CNSNS.2020.105260
[37] M. Mirzazadeh, “Soliton solutions of Davey-Stewartson equation by trial equation method and ansatz approach,” Nonlinear Dynam., vol. 82, no. 4, pp. 1775-1780, 2015. doi:10.1007/S11071-015-2276-X. · Zbl 1348.35049 · doi:10.1007/S11071-015-2276-X
[38] Y. Sun, B. Tian, Y. Q. Yuan, and Z. Du, “Semi-rational solutions for a (2 + 1) -dimensional Davey-Stewartson system on the surface water waves of finite depth,” Nonlinear Dynam., vol. 94, pp. 3029-3040, 2018. doi:10.1007/S11071-018-4542-1/FIGURES/12. · doi:10.1007/S11071-018-4542-1/FIGURES/12
[39] Y. Liu, C. Qian, D. Mihalache, and J. He, “Rogue waves and hybrid solutions of the Davey-Stewartson I equation,” Nonlinear Dynam., vol. 95, pp. 839-857, 2019. doi:10.1007/S11071-018-4599-X/FIGURES/17. · Zbl 1439.35119 · doi:10.1007/S11071-018-4599-X/FIGURES/17
[40] H. Jafari, A. Sooraki, Y. Talebi, and A. Biswas, “The first integral method and traveling wave solutions to Davey-Stewartson equation,” Nonlinear Anal. Model Control, vol. 17, pp. 182-193, 2012. doi:10.15388/NA.17.2.14067. · Zbl 1311.35289 · doi:10.15388/NA.17.2.14067
[41] H. M. Baskonus, “New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics,” Nonlinear Dynam., vol. 86, pp. 177-183, 2016. doi:10.1007/S11071-016-2880-4/FIGURES/6. · doi:10.1007/S11071-016-2880-4/FIGURES/6
[42] E. M. E. Zayed and M. E. M. Alngar, “Optical solitons in birefringent fibers with Biswas-Arshed model by generalized Jacobi elliptic function expansion method,” Optik, vol. 203, p. 163922, 2020. doi:10.1016/J.IJLEO.2019.163922. · doi:10.1016/J.IJLEO.2019.163922
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.