×

A non-linear multi-objective technique for hybrid peer-to-peer communication. (English) Zbl 07830055

Summary: This work proposes a strategy management technique based on hybrid peer-to-peer communication system. The main techniques used in the P2PC are: (i) Multi-objective optimization, (ii) Game theory technique, (iii) Non-linear geometric programming, and (iv) Intuitionistic fuzzy logic. Multi-objective optimization is used to design multiple non-linear objective functions. Game theory is used to model the conflicting strategies of the nodes using payoff matrices. Non-linear geometric programming is used to estimate uncertainty related parameters. Intuitionistic fuzzy logic is used to reduce the imprecise parameters of the nodes with the support of some objective functions. The set of stated techniques gives effective mathematical modelling to analyze the conflicting situation of the nodes. Therefore, this modelling helps to derive intelligent communication between source and destination nodes. Mathematical analysis and simulation results are used to validate the P2PC method. The simulation results are achieved in the Lingo optimization simulator using the existing methodologies in terms of some performance metrics.

MSC:

90C29 Multi-objective and goal programming
91A10 Noncooperative games
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
Full Text: DOI

References:

[1] Robinson, Y. H.; Julie, E. G.; Saravanan, K.; Kumar, R., FD-AOMDV: fault-tolerant disjoint ad-hoc on-demand multipath distance vector routing algorithm in mobile ad-hoc networks, J. Ambient Intell. Humaniz. Comput., 10, 11, 4455-4472 (2019)
[2] Das, S. K., Smart design and its applications: challenges and techniques, (Nature-Inspired Computing for Smart Application Design (2021), Springer), 1-6
[3] He, J.; Ni, Y.; Cai, L.; Pan, J.; Chen, C., Optimal dropbox deployment algorithm for data dissemination in vehicular networks, IEEE Trans. Mob. Comput., 17, 3, 632-645 (2018)
[4] Gharib, M.; Moradlou, Z.; Doostari, M. A.; Movaghar, A., Fully distributed ecc-based key management for mobile ad hoc networks, Comput. Netw., 113, 269-283 (2017)
[5] Das, S. K.; Dao, T.-P.; Perumal, T., Nature-Inspired Computing for Smart Application Design (2021), Springer
[6] Ying, L.; Srikant, R.; Kang, X., The power of slightly more than one sample in randomized load balancing, Math. Oper. Res., 42, 3, 692-722 (2017) · Zbl 1420.68028
[7] Bhaumik, A.; Roy, S. K.; Weber, G. W., Hesitant interval-valued intuitionistic fuzzy-linguistic term set approach in prisoners’ dilemma game theory using topsis: a case study on human-trafficking, Cent. Eur. J. Oper. Res., 28, 2, 797-816 (2020) · Zbl 07191581
[8] Maiti, S. K.; Roy, S. K., Bi-level programming for Stackelberg game with intuitionistic fuzzy number: a ranking approach, J. Oper. Res. Soc. China, 9, 1, 131-149 (2021) · Zbl 1474.90280
[9] Jana, J.; Roy, S. K., Linguistic Pythagorean hesitant fuzzy matrix game and its application in multi-criteria decision making, Appl. Intell., 1-22 (2022)
[10] Bhaumik, A.; Roy, S. K., Evaluations for medical diagnoses phenomena through 2 × 2 linguistic neutrosophic environment-based game situation, Soft Comput., 26, 10, 4883-4893 (2022)
[11] Jana, J.; Roy, S. K., Two-person game with hesitant fuzzy payoff: an application in madm, RAIRO. Rech. Opér., 55, 5 (2021) · Zbl 1483.91009
[12] Roy, S. K.; Jana, J., The multi-objective linear production planning games in triangular hesitant fuzzy sets, Sādhanā, 46, 3, 1-14 (2021)
[13] Sridhar, S.; Baskaran, R.; Chandrasekar, P., Energy supported AODV (EN-AODV) for QoS routing in manet, Proc., Soc. Behav. Sci., 73, 294-301 (2013)
[14] Gu, C.; Zhu, Q., An energy-aware routing protocol for mobile ad hoc networks based on route energy comprehensive index, Wirel. Pers. Commun., 79, 2, 1557-1570 (2014)
[15] Ravi, G.; Kashwan, K., A new routing protocol for energy efficient mobile applications for ad hoc networks, Comput. Electr. Eng., 48, 77-85 (2015)
[16] Guo, Z.; Malakooti, S.; Sheikh, S.; Al-Najjar, C.; Malakooti, B., Multi-objective olsr for proactive routing in manet with delay, energy, and link lifetime predictions, Appl. Math. Model., 35, 3, 1413-1426 (2011) · Zbl 1211.90044
[17] Sadou, M.; Bouallouche-Medjkoune, L., Efficient message delivery in hybrid sensor and vehicular networks based on mathematical linear programming, Comput. Electr. Eng., 64, 496-505 (2017)
[18] Carvalho, T.; Júnior, J. J.; Francês, R., A new cross-layer routing with energy awareness in hybrid mobile ad hoc networks: a fuzzy-based mechanism, Simul. Model. Pract. Theory, 63, 1-22 (2016)
[19] Morawski, M.; Ignaciuk, P., Network nodes play a game-a routing alternative in multihop ad-hoc environments, Comput. Netw., 122, 96-104 (2017)
[20] Das, S. K.; Tripathi, S.; Burnwal, A., Fuzzy based energy efficient multicast routing for ad-hoc network, (Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT) (2015), IEEE), 1-5
[21] Yao, Y.; Cao, Q.; Vasilakos, A. V., EDAL: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks, IEEE/ACM Trans. Netw., 23, 3, 810-823 (2014)
[22] Das, S. K.; Tiwari, A. K.; Rath, S.; Rani, M.; Das, S. P.; Nayak, S., Fuzzy-based strategy management in wireless ad hoc network, (Intelligent and Cloud Computing (2021), Springer), 247-254
[23] Das, S. K.; Das, A.; Sinha, H. K.; Das, S. P.; Nayak, S., Game theory based optimal decision-making system, (Intelligent and Cloud Computing (2021), Springer), 761-769
[24] Anand, M.; Balaji, N.; Bharathiraja, N.; Antonidoss, A., A controlled framework for reliable multicast routing protocol in mobile ad hoc network, (Materials Today: Proceedings (2021))
[25] Patsariya, M.; Rajavat, A., Node capability-based route selection on mobile ad hoc network, (Materials Today: Proceedings (2021))
[26] Eksert, M. L.; Yücel, H.; Onur, E., Intra-and inter-cluster link scheduling in cups-based ad hoc networks, Comput. Netw., 185, Article 107659 pp. (2021)
[27] Thiagarajan, R.; Babu, M. R.; Moorthi, M., Quality of service based ad hoc on-demand multipath distance vector routing protocol in mobile ad hoc network, J. Ambient Intell. Humaniz. Comput., 1-9 (2020)
[28] Kumar, J.; Singh, A.; Bhadauria, H., Congestion control load balancing adaptive routing protocols for random waypoint model in mobile ad-hoc networks, J. Ambient Intell. Humaniz. Comput., 1-9 (2020)
[29] Dragonas, V.; Tsoumanis, G.; Koufoudakis, G.; Papamichail, A.; Oikonomou, K.; Stavrakakis, I., A fairness-aware topology independent tdma mac policy in time constrained wireless ad hoc networks, Comput. Netw., 171, Article 107157 pp. (2020)
[30] Al Qurashi, M.; Angelopoulos, C. M.; Katos, V., An architecture for resilient intrusion detection in ad-hoc networks, J. Inf. Secur. Appl., 53, Article 102530 pp. (2020)
[31] Sarkar, S.; Datta, R., A secure and energy-efficient stochastic multipath routing for self-organized mobile ad hoc networks, Ad Hoc Netw., 37, 209-227 (2016)
[32] Jiang, C.; Hao, K.; Pedrycz, W.; Chen, L.; Cai, X., Optimization control method for industrial Internet of things based on biological adaptive coevolutionary, Wirel. Netw., 27, 8, 5145-5160 (2021)
[33] Wang, G.-G.; Wei, C.-L.; Wang, Y.; Pedrycz, W., Improving distributed anti-flocking algorithm for dynamic coverage of mobile wireless networks with obstacle avoidance, Knowl.-Based Syst., 225, Article 107133 pp. (2021)
[34] Zhong, H.; Han, S.; Cui, J.; Zhang, J.; Xu, Y., Privacy-preserving authentication scheme with full aggregation in vanet, Inf. Sci., 476, 211-221 (2019)
[35] Han, G.; Xu, M.; He, Y.; Jiang, J.; Ansere, J. A.; Zhang, W., A dynamic ring-based routing scheme for source location privacy in wireless sensor networks, Inf. Sci., 504, 308-323 (2019)
[36] Cagliero, L.; Cerquitelli, T.; Chiusano, S.; Garza, P.; Attanasio, A., Characterizing unpredictable patterns in wireless sensor network data, Inf. Sci., 467, 149-162 (2018) · Zbl 1441.68221
[37] Wang, Y.; Yu, Z.; Huang, J.; Choi, C., A novel energy-efficient neighbor discovery procedure in a wireless self-organization network, Inf. Sci., 476, 429-438 (2019)
[38] Amin, R.; Hossain, S., An rts-cts based medium access control protocol for full-duplex wireless local area networks, Ad Hoc Netw., 132, Article 102858 pp. (2022)
[39] Barati, H., A hierarchical key management method for wireless sensor networks, Microprocess. Microsyst., 90, Article 104489 pp. (2022)
[40] Chen, H.; Chen, Z., Energy-efficient power scheduling and allocation scheme for wireless sensor networks, Energy Rep., 8, 283-290 (2022)
[41] Na, X.; Cong, W.; Huaizhen, P.; Zhongqiu, Z.; Yuqing, C.; Peipei, W.; Huazheng, D.; Sheng, D.; Yongtang, Y., Optimization algorithms in wireless monitoring networks: a survey, Neurocomputing, 489, 584-598 (2022)
[42] Malar, A. C.J.; Kowsigan, M.; Krishnamoorthy, N.; Karthick, S.; Prabhu, E.; Venkatachalam, K., Multi constraints applied energy efficient routing technique based on ant colony optimization used for disaster resilient location detection in mobile ad-hoc network, J. Ambient Intell. Humaniz. Comput., 1-11 (2020)
[43] Fareena, N.; Kumari, S. S., A distributed fuzzy multicast routing protocol (dfmcrp) for maximizing the network lifetime in mobile ad-hoc networks, J. Ambient Intell. Humaniz. Comput., 1-12 (2020)
[44] Araujo, F.; Gomes, A.; Rocha, R. P., Towards optimal convergecast in wireless ad hoc networks, Ad Hoc Netw., 107, Article 102214 pp. (2020)
[45] Sridevi, N.; Nagarajan, V.; Sakthidasan, K., Efficient traffic control and lifetime maximization in mobile ad hoc network by using pso-bat optimization, Wirel. Netw., 1-10 (2019)
[46] Wilson, J.; Subramaniam, K., Improved multi objective data transmission using conventional route selection algorithm in mobile ad hoc network, Peer-to-Peer Netw. Appl., 1-11 (2019)
[47] De Francesco, C.; De Giovanni, L.; Palazzi, C. E., The interference-aware drone ad-hoc relay network configuration problem, Electron. Notes Discrete Math., 69, 317-324 (2018)
[48] Zarifzadeh, S.; Yazdani, N., Neighbor selection game in wireless ad hoc networks, Wirel. Pers. Commun., 70, 2, 617-640 (2013)
[49] Huang, H.; Oh, S.-K.; Wu, C.-K.; Pedrycz, W., Fuzzy clustering-based neural networks modelling reinforced with the aid of support vectors-based clustering and regularization technique, Neurocomputing, 482, 139-153 (2022)
[50] Khanna, R.; Kumar, A., Artificial intelligence applications for target node positions in wireless sensor networks using single mobile anchor node, Comput. Ind. Eng., 167, Article 107998 pp. (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.