×

Modeling nonlinear dissipative chemical dynamics by a forced modified van der Pol-Duffing oscillator with asymmetric potential: chaotic behaviors predictions. (English) Zbl 07819495

Summary: This paper addresses the issues of nonlinear chemical dynamics modeled by a modified Van der Pol-Duffing oscillator with asymmetric potential. The Melnikov method is utilized to analytically determine the domains boundaries where Melnikov’s chaos appears in chemical oscillations. Routes to chaos are investigated through bifurcations structures, Lyapunov exponent, phase portraits and Poincaré section. The effects of parameters in general and in particular the effect of the constraint parameter \(\beta\) which shows the difference between a nonlinear chemical dynamics order two differential equation and ordinary Van der Pol-Duffing equation are analyzed. Results of analytical investigations are validated and complemented by numerical simulations.

MSC:

34H10 Chaos control for problems involving ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Boissonade, J.; De Kepper, P., Transitions from bistability to limit cycle oscillations. theoretical analysis and experimental evidence in an open chemical system, J. Phys. Chem., 84, 501-506, (1980)
[2] Zhabotinskii, A. M., Biological and Biochemical Osciihtws, (1972), Academic Press: Academic Press New York
[3] Epstein, I. R.; Showalter, K., Nonlinear chemical dynamics: oscillations, patterns, and chaos, J. Phys. Chem., 100, 13132-13147, (1996)
[4] Belousov, B. P., In Oscillations and Travelling Waves in Chemical Systems, (1985), Wiley: Wiley New York
[5] Zhabotinsky, A. M.; Buchholtz, F.; Kiyatkin, A. B.; Epstein, I. R., J. Phys. Chem., 97, 7578, (1993)
[6] Zhang, D.; Gyorgyi, L.; Peltier, W. R., Deterministic chaos in the Belousov-Zhabotinsky reaction: experiments and simulations, Chaos, 3, 4, 723-745, (1993)
[7] Ali, F.; Menzinger, M., Stirring effects and phase-dependent inhomogeneity in chemical oscillations: the Belousov-Zhabotinsky reaction in a CSTR, J. Phys. Chem. A, 101, 2304-2309, (1997)
[8] Bartuccelli, M.; Gentile, G.; Wright, J. A., Stable dynamics in forced systems with sufficiently high/low forcing frequency, Chaos, 26, 083108, (2016) · Zbl 1378.37102
[9] Sriram, K.; Bernard, S., Complex dynamics in the oregonator model with linear delayed feedback, Chaos, 18, 023126, (2008)
[10] Goryachev, A.; Strizhak, P.; Kapral, R., Slow manifold structure and the emergence of mixed-mode oscillations, J. Chem. Phys., 107, 2881-2889, (1997)
[11] Shabunin, A.; Astakhov, V.; Demidov, V.; Provata, A.; Baras, F.; Nicolis, G.; Anishchenko, V., Modeling chemical reactions by forced limit-cycle oscillator: synchronization phenomena and transition to chaos, Chaos Solit. Fract., 15, 395-405, (2003) · Zbl 1034.92044
[12] Tornheim, K., Are metabolic oscillations responsible for normal oscillatory insulin secretion?, Diabetes, 46, 1375-1380, (1997)
[13] E800-5.
[14] Chance, B.; Pye, E. K.; Ghosh, A. K.; Hess, B., Biological and Biochemical Oscillators, (1973), Academic Press: Academic Press New York
[15] Selko’v, E. E., Self-oscillations in glycolysis model, Eur. J. Biochem., 4, 79-86, (1968)
[16] Reich, J. G.; Selko’v, E. E., Energy Metabolism of the Cell: A Theoretical Treatise, (1981), Academic Press: Academic Press New York
[17] (In Press). · Zbl 1163.37342
[18] Enjieu Kadji, H. G.; Nana Nbendjo, B. R.; Chabi Orou, J. B.; Talla, P. K., Nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator, Phys. Plasmas, 15, 032308, (2008)
[19] Miwadinou, C. H.; Monwanou, A. V.; Hinvi, A. L.; Koukpemedji, A. A.; Ainamon, C.; Orou, J. B.C., Melnikov chaos in a modified Rayleigh-Duffing oscillator with ϕ^6 potential, Int. J. Bifurcation Chaos, 26, 1650085, (2016) · Zbl 1343.34091
[20] Ainamon, C.; Miwadinou, C. H.; Monwanou, A. V.; Orou, J. B.C., Analysis of multiresonance and chaotic behavior of the polarization in materials modeled by a duffing equation with multifrequency excitations, Appl. Phys. Res., 6, 74-86, (2014)
[21] Miwadinou, C. H.; Monwanou, A. V.; Chabi Orou, J. B., Active control of the parametric resonance in the modified Rayleigh-Duffing oscillator, Afr. Rev. Phys., 9, 227-235, (2014)
[22] Effect of nonlinear dissipation on the basin boundaries of a driven two-well modified rayleigh-duffing oscillator, Int. J. Bifurcation Chaos, 25, 2, 1550024, (2015) · Zbl 1309.34057
[23] Miwadinou, C. H.; Hinvi, A. L.; Monwanou, A. V.; Chabi Orou, J. B., Nonlinear dynamics of a ϕ^6 modified duffing oscillator: resonant oscillations and transition to chaos, Nonlinear Dyn., 88, 97-113, (2017)
[24] Zebrowski, J. J.; Grudzinski, K.; Buchner, T.; Kuklik, P.; Gac, J.; Gielerak, G.; Sanders, P.; Baranowski, R., Nonlinear oscillator model reproducing various phenomena in the dynamics of the conduction system of the heart, Chaos, 17, 015121, (2007) · Zbl 1159.37428
[25] Verveyko, D. V.; Verisokin, A. Y., Application of HE’s method to the modified Rayleigh equation, Discrete Continuous Dyn. Syst., Suppl., 1423-1431, (2011) · Zbl 1306.34024
[26] Sarwar, S.; Iqbal, S., Stability analysis, dynamical behavior and analytical solutions of nonlinear fractional differential system arising in chemical reaction, Chin. J. Phys., 56, 374-384, (2018) · Zbl 07816181
[27] Cai, P.; Yuan, Z. Z., A hopf bifurcation and chaos control in a new chaotic system via hybrid control strategy, Chin. J. Phys., 55, 64-70, (2017) · Zbl 1539.34065
[28] Hayashi, C., Nonlinear Oscillations in Physical Systems, (1964), McGraw Hill: McGraw Hill New York · Zbl 0192.50605
[29] Nayfeh, A. H., Introduction to Perturbation Techniques, (1981), John Wiley and Sons: John Wiley and Sons New York · Zbl 0449.34001
[30] Tabejieu, L. M.A.; Nbendjo, B. R.N.; Woafo, P., On the dynamics of rayleigh beams resting on fractional-order viscoelastic pasternak foundations subjected to moving loads, Chaos Solit. Fract., 93, 39-47, (2016) · Zbl 1372.74044
[31] Tekam, G. T.O.; Kwuimy, C. A.K.; Woafo, P., Analysis of tristable energy harvesting system having fractional order viscoelastic material, Chaos, 25, 013112, (2015) · Zbl 1345.74024
[32] Cicogna, G.; Papoff, F., Asymmetric duffing equation and the appearance of chaos, Europhys. Lett., 3, 963, (1987)
[33] Oumarou, A. S.; Nana Nbendjo, B. R.; Woafo, P., Appearance of horseshoes chaos on a buckled beam controlled by disseminated couple forces, Commun. Nonlinear Sci. Numer. Simulat., 16, 3212-3218, (2011) · Zbl 1343.74022
[34] Kwuimy, C. A.K.; Nataraj, C.; Litak, G., Melnikov’s criteria, parametric control of chaos, and stationary chaos occurrence in systems with asymmetric potential subjected to multiscale type excitation, Chaos, 21, 043113, (2011) · Zbl 1317.93202
[35] Sethu Meenakshi, M. V.; Athisayanathan, S.; Chinnathambi, V.; Rajasekar, S., Analytical estimates of the effect of amplitude modulated signal in nonlinearly damped Duffing-Van der Pol oscillator, Chin. J. Phys., 55, 2208-2217, (2017) · Zbl 07815515
[36] Enjieu Kadji, H. G.; Chabi Orou, J. B.; Yamapi, R.; Woafo, P., Nonlinear dynamics and strange attractors in the biological system, Chaos Solit. Fract., 32, 862-882, (2007) · Zbl 1138.37050
[37] Chamgoué, A. C.; Yamapi, R.; Woafo, P., Dynamics of a biological system with time-delayed noise, Eur. Phys. J. Plus, 127, 59, (2012)
[38] Kaiser, F., Coherent Excitations in Biological Systems: Specific Effects in Externally Driven Self-Sustained Oscillating Biophysical Systems, (1983), Heidelberg, Springer-Verlag, Berlin
[39] Gradstein, I. S.; Ryzhik, I. M., Table of Integrals, Series and Products, (1975), Academic: Academic New York
[40] Piskunov, N., Calcul Diffrentiel et Intgral, Tome II, (1980), MIR: MIR Moscou
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.