×

Results of space experiments and effect of torsion. (English) Zbl 07813584

Summary: The results of two space experiments, around the world clocks and gravity probe B, are analyzed theoretically using a field theory. The field equations of this theory are reduced to those of general relativity outside material distribution, while its equations of motion are not a geodesic one. This equation violates the weak equivalence principle because of the non-vanishing torsion in the geometry used. The predictions of the theory give rise to the time dilation measured by the first experiment and to the geodetic and frame drag effects measured by the second experiment. Furthermore, we show that these predictions are affected by the torsion of space-time. The torsion term, in the equation of motion, is connected to other effects through a coupling parameter. This parameter is called the “spin-torsion” coupling if the moving test particle is elementary one with non-vanishing quantum spin. We call this parameter “rotation-torsion” coupling if the moving test particle is a gyroscope. In the first case, the coupling parameter is well defined and confirmed by terrestrial experiment, while in the second case the parameter still needs further investigation and discussion.

MSC:

83Cxx General relativity
83C10 Equations of motion in general relativity and gravitational theory
83-XX Relativity and gravitational theory
Full Text: DOI

References:

[1] Hafele, J. C. and Keating, R. E., Around-the-world atomic clock: Predicted relativistic time gain, Science177 (1972a) 166-168.
[2] Hafele, J. C. and Keating, R. E., Around-the-world atomic clock: Observed relativistic time gain, Science177 (1972b) 168-170.
[3] Everitt, C. W. F., Hehl, F., Lammerzehl, C.et al., Gyros, clocks, interferometers ....: testing relativistic gravity in space, Lect. Notes Phys.562 (2001) 31-51. · Zbl 0964.00026
[4] Everitt, C. W. F., Adams, M., Bencze, W.et al., Gravity prob b: Data analysis results, Space Sci. Rev.148 (2009) 53-69.
[5] Everitt, C. W. F., DeBra, D. B., Parkinson, B. W.et al., Gravity prob b data: Final results of a space experiment to test general relativity, Phys. Rev. Lett.106 (2011).
[6] Adler, R., Bazin, M. and Schiffer, M., Introduction to General Relativity, 2nd edn. (McGraw-Hill, New York, 1975).
[7] Wanas, M. I., Parameterized absolute parallelism: a geometry for physical applications, Turkish J. Phys.24 (2000) 473-488.
[8] Potzel, W., Scheiner, C., Steiner, M.et al., Gravitational redshift experiments with the high-resolution mssbauer resonance in 67zn, Hyperfine Interact.72 (1992) 197-214.
[9] Canklin, J. W., Heifetz, M. I., Holmes, T.et al., Gravity prob b data analysis III, estimation tools and analysis results, IOP Publish. Class. Quantum Grav.32 (2015) 224020.
[10] Wanas, M. I., Motion of spinning particles in gravitational fields, Astrophys. Space Sci.258 (1998) 237-248. · Zbl 0947.83042
[11] Wanas, M. I. and Kamal, M. M., A field theory with curvature and anticurvature, Adv. High Energy Phys.2014 (2014) 1-15. · Zbl 1425.70044
[12] Wanas, M. I., Youssef, N. L. and El-Hanafy, W., A pure geometric theory of gravity and a material distribution, Grav. Cosmol.23 (2017) 105-118. · Zbl 1380.83232
[13] Wanas, M. I., Ammar, S. A. and Refaey, S. A., Teleparallel gravity with nonvanishing curvature, Canad. J. Phys.96 (2018) 1373-1383.
[14] Hayashi, K. and Shirfuji, T., New general relativity, Phys. Rev. D19 (1979) 3524. · Zbl 1267.83090
[15] Mikhail, F. I., Tetrad vector fields and generalizing the theory of relativity, Ain Shams Bull.6 (1962) 87-111.
[16] Mikhail, F. I. and Wanas, M. I., A generalized field theory i. field equations, Proc. Roy. Soc. Lond. A356 (1977) 471-481.
[17] Wanas, M. I. and Ammar, S. A., Spacetime structure and electromagnetism, Mod. Phys. Lett. A25 (2010) 1705-1721. · Zbl 1193.83040
[18] Wanas, M. I., Osman, S. N. and El-Kholy, R. I., Unification principle and a geometric field theory, Open Phys.13 (2015) 247-262.
[19] Wanas, M. I., Youssef, N. L. and Sid-Ahmed, A. M., Teleparallel lagrange geometry and a unified field theory, Class. Quantum Grav.27 (2010) 045005. · Zbl 1186.83134
[20] Wanas, M. I., Youssef, N. L., El-Hanafy, W. and Osman, S. N., Einstein geometrization philosophy and differential identities in pap-geometry, Adv. Math. Phys.2016 (2016) 1-8. · Zbl 1357.83013
[21] Seaz, D., Stationary axisymmetric fields in a teleparallel theory of gravitation, Phys. Lett. A106 (1984) 293-295.
[22] Nashed, G. G. L., A kerr metric solution in tetrad theory of gravity, Chaos Solitons Fractals15 (2003) 687-694, arXiv:gr-qc/0204066. · Zbl 1034.83020
[23] Mona M. Kamal, Spin-torsion interacion and gravitomagnetism. M. SC. thesis, Faculty of Girls, Ain Shams University, Cairo, Egypt (2011).
[24] Mashhoon, B., Gronwald, F., Hehl, F. W. and Theiss, D. S., On measuring gravitomagnetism via spaceborne clocks: a gravitomagnetic clock effect, Ann. Phys.8 (1999) 135-152. · Zbl 0919.53030
[25] Allen, C. W., Astrophysical Quantities, 4th edn. (Springer-Verlag, New York, 2002).
[26] Colella, R., Overhauser, A. W. and Werner, S. A., Observation of gravitationally induced quantum interference, Phys. Rev. Lett.34 (1975) 1472-1474.
[27] Wanas, M. I., Melek, M. and Kahil, M. E., Quantum interference of thermal neutrons and spin-torsion interaction, Grav. Cosmol.6 (2000) 319-322. · Zbl 1009.83520
[28] Altschul, B., Bailey, Q. G., Blanchet, L.et al., Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission, Adv. Space Res.55 (2015) 501524.
[29] Tino, G. M., Bassi, A., Bianco, G.et al., SAGE: A proposal for a space atomic gravity explorer, Eur. Phys. J. D73 (2019) 228.
[30] Tino, G. M., Cacciapuoti, L., Capozziello, S.et al., Precision gravity tests and the Einstein equivalence principle, Progress Particle Nucl. Phys.112 (2020) 103772.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.