×

Mixed virtual element formulations for incompressible and inextensible problems. (English) Zbl 07797128

Summary: Locking effects can be a major concern during the numerical modelling of elastic materials, especially for large strains. Those effects arise from volumetric constraints such as incompressibility or anisotropic effects of the underlying material class. One particular solution strategy is to employ mixed formulations, which provide solutions tailored to the specific locking phenomena at hand. While being in general powerful, one drawback of such solution strategies is that the provided strategy to overcome locking is often tied or limited to some specific topological type of finite elements and thus forfeiting generality. Contrary the Virtual Element Method (VEM) benefits by definition from allowing arbitrary element shapes and number of nodes at element level. A variety of approaches for the treatment of locking phenomena for hyperelastic material is formulated in this contribution for the Virtual Element Method with a low order ansatz. Key ingredient to the implementation of multi-field mixed principles in VEM is the consideration of only one constant variable per field and one corresponding Lagrange multiplier over the entire virtual element. Hereby the stabilization contribution utilizes the mixed formulation but shares the element-wise constant variable with the projection part of the virtual element. A direct consequence of this rather simple implementation strategy is the combination of powerful mixed formulations with a computational approach that is able to treat general element shapes. The proposed formulations are tested with regard to structured mesh at standard examples in computational mechanics as well as at specific computational engineering applications where also unstructured meshes are utilized.

MSC:

74S99 Numerical and other methods in solid mechanics
74B20 Nonlinear elasticity
74E10 Anisotropy in solid mechanics

Software:

FEAPpv; Neper; AceFEM
Full Text: DOI

References:

[1] Aboudi, J.; Arnold, SM; Bednarcyk, BA, Micromechanics of composite materials: a generalized multiscale analysis approach (2012), Oxford: Butterworth-Heinemann, Oxford
[2] Andelfinger U, Ramm E (1993) EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int J Numer Meth Eng 36(8):1311-1337 · Zbl 0772.73071
[3] Artioli, E., Asymptotic homogenization of fibre-reinforced composites: a virtual element method approach, Meccanica, 53, 6, 1187-1201 (2018) · Zbl 1390.74174 · doi:10.1007/s11012-018-0818-2
[4] Artioli, E.; Marfia, S.; Sacco, E., High-order virtual element method for the homogenization of long fiber nonlinear composites, Comput Methods Appl Mech Eng, 341, 571-585 (2018) · Zbl 1440.74338 · doi:10.1016/j.cma.2018.07.012
[5] Auricchio, F.; Beirão da Veiga, L.; Lovadina, C.; Reali, A.; Taylor, RL; Wriggers, P., Approximation of incompressible large deformation elastic problems: some unresolved issues, Comput Mech, 52, 5, 1153-1167 (2013) · Zbl 1388.74011 · doi:10.1007/s00466-013-0869-0
[6] Auricchio, F.; Da Veiga, LB; Lovadina, C.; Reali, A., A stability study of some mixed finite elements for large deformation elasticity problems, Comput Methods Appl Mech Eng, 194, 9-11, 1075-1092 (2005) · Zbl 1093.74053 · doi:10.1016/j.cma.2004.06.014
[7] Babuška, I., The finite element method with Lagrangian multipliers, Numer Math, 20, 3, 179-192 (1973) · Zbl 0258.65108 · doi:10.1007/BF01436561
[8] Babuška, I.; Suri, M., Locking effects in the finite element approximation of elasticity problems, Numer Math, 62, 1, 439-463 (1992) · Zbl 0762.65057 · doi:10.1007/BF01396238
[9] Balzani, D.; Neff, P.; Schröder, J.; Holzapfel, GA, A polyconvex framework for soft biological tissues. Adjustment to experimental data, Int J Solids Struct, 43, 20, 6052-6070 (2006) · Zbl 1120.74632 · doi:10.1016/j.ijsolstr.2005.07.048
[10] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, LD; Russo, A., Basic principles of virtual element methods, Math Models Methods Appl Sci, 23, 1, 199-214 (2013) · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[11] Beirão da Veiga, L.; Brezzi, F.; Marini, LD; Russo, A., The hitchhiker’s guide to the virtual element method, Math Models Methods Appl Sci, 24, 8, 1541-1573 (2014) · Zbl 1291.65336 · doi:10.1142/S021820251440003X
[12] Belytschko, T.; Ong, JS-J; Liu, WK; Kennedy, JM, Hourglass control in linear and nonlinear problems, Comput Methods Appl Mech Eng, 43, 3, 251-276 (1984) · Zbl 0522.73063 · doi:10.1016/0045-7825(84)90067-7
[13] Böhm, C.; Munk, L.; Hudobivnik, B.; Aldakheel, F.; Jože, K.; Wriggers, P., Virtual Elements for computational anisotropic crystal plasticity, Comput Methods Appl Mech Eng, 372, 113394 (2022) · Zbl 1529.74073
[14] Brands, D.; Balzani, D.; Scheunemann, L.; Schröder, J.; Richter, H.; Raabe, D., Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from ebsd data, Arch Appl Mech, 86, 3, 575-598 (2016) · doi:10.1007/s00419-015-1044-1
[15] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, Publications mathématiques et informatique de Rennes, S4, 1-26 (1974) · Zbl 0338.90047
[16] Chapelle, D.; Bathe, K-J, The inf-sup test, Comput Struct, 47, 4-5, 537-545 (1993) · Zbl 0780.73074 · doi:10.1016/0045-7949(93)90340-J
[17] Chun, YB; Yu, S-H; Semiatin, S.; Hwang, S-K, Effect of deformation twinning on microstructure and texture evolution during cold rolling of cp-titanium, Mater Sci Eng A, 398, 1-2, 209-219 (2005) · doi:10.1016/j.msea.2005.03.019
[18] Cihan, M.; Hudobivnik, B.; Aldakheel, F.; Wriggers, P., 3d mixed virtual element formulation for dynamic elasto-plastic analysis, Comput Mech, 68, 3, 1-18 (2021) · Zbl 1477.74117 · doi:10.1007/s00466-021-02010-8
[19] da Veiga LB, Canuto C, Nochetto RH, Vacca G, Verani M (2021) Adaptive vem: Stabilization-free a posteriori error analysis. arXiv preprint arXiv:2111.07656 · Zbl 1512.65258
[20] De Jong, M.; Chen, W.; Angsten, T.; Jain, A.; Notestine, R.; Gamst, A.; Sluiter, M.; Krishna Ande, C.; Van Der Zwaag, S.; Plata, JJ, Charting the complete elastic properties of inorganic crystalline compounds, Sci Data, 2, 1, 1-13 (2015)
[21] Ebbing V (2010) Design of polyconvex energy functions for all anisotropy classes. Inst. für Mechanik, Abt. Bauwissenschaften
[22] Hamila, N.; Boisse, P., Locking in simulation of composite reinforcement deformations. Analysis and treatment, Compos A Appl Sci Manuf, 53, 109-117 (2013) · doi:10.1016/j.compositesa.2013.06.001
[23] Holzapfel, GA, Nonlinear solid mechanics: a continuum approach for engineering science, Meccanica, 37, 4, 489-490 (2002) · doi:10.1023/A:1020843529530
[24] Holzapfel, GA; Gasser, TC, A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications, Comput Methods Appl Mech Eng, 190, 34, 4379-4403 (2001) · doi:10.1016/S0045-7825(00)00323-6
[25] Holzapfel, GA; Gasser, TC; Ogden, RW, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J Elast Phys Sci Solids, 61, 1, 1-48 (2000) · Zbl 1023.74033
[26] Hu, H-C, On some variational principles in the theory of elasticity and plasticity, Sci Sin, 4, 33-54 (1955) · Zbl 0066.17903
[27] Hughes, TJ, The finite element method: linear static and dynamic finite element analysis (2012), North Chelmsford: Courier Corporation, North Chelmsford
[28] Korelc J (2022) AceFEM Help Manual, Version 7.505. Lubljana, SLO,
[29] Korelc, J., Automation of primal and sensitivity analysis of transient coupled problems, Comput Mech, 44, 5, 631-649 (2009) · Zbl 1171.74043 · doi:10.1007/s00466-009-0395-2
[30] Korelc, J.; Šolinc, U.; Wriggers, P., An improved EAS brick element for finite deformation, Comput Mech, 46, 4, 641-659 (2010) · Zbl 1358.74059 · doi:10.1007/s00466-010-0506-0
[31] Korelc, J.; Wriggers, P., Automation of finite element methods (2016), Berlin: Springer, Berlin · Zbl 1367.74001 · doi:10.1007/978-3-319-39005-5
[32] Kraus, A.; Wriggers, P.; Viebahn, N.; Schröder, J., Low-order locking-free mixed finite element formulation with approximation of the minors of the deformation gradient, Int J Numer Meth Eng, 120, 8, 1011-1026 (2019) · Zbl 07864313 · doi:10.1002/nme.6168
[33] Marino, M.; Hudobivnik, B.; Wriggers, P., Computational homogenization of polycrystalline materials with the virtual element method, Comput Methods Appl Mech Eng, 355, 349-372 (2019) · Zbl 1441.74190 · doi:10.1016/j.cma.2019.06.004
[34] Marino, M.; Wriggers, P., Nearly-constrained transversely isotropic linear elasticity: energetically consistent anisotropic deformation modes for mixed finite element formulations, Int J Solids Struct, 202, 166-183 (2020) · doi:10.1016/j.ijsolstr.2020.05.011
[35] Matouš, K.; Geers, MG; Kouznetsova, VG; Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J Comput Phys, 330, 192-220 (2017) · doi:10.1016/j.jcp.2016.10.070
[36] Nye, JF, Physical properties of crystals: their representation by tensors and matrices (1985), Oxford: Oxford University Press, Oxford · Zbl 0079.22601
[37] Özdemir, I.; Brekelmans, W.; Geers, M., Fe2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids, Comput Methods Appl Mech Eng, 198, 3-4, 602-613 (2008) · Zbl 1228.74065 · doi:10.1016/j.cma.2008.09.008
[38] Park, K.; Chi, H.; Paulino, GH, B-bar virtual element method for nearly incompressible and compressible materials, Meccanica, 56, 6, 1423-1439 (2021) · Zbl 1520.74084 · doi:10.1007/s11012-020-01218-x
[39] Pingaro, M.; De Bellis, ML; Trovalusci, P.; Masiani, R., Statistical homogenization of polycrystal composite materials with thin interfaces using virtual element method, Compos Struct, 264, 113741 (2021) · doi:10.1016/j.compstruct.2021.113741
[40] Quey, R.; Dawson, P.; Barbe, F., Large-scale 3d random polycrystals for the finite element method: Generation, meshing and remeshing, Comput Methods Appl Mech Eng, 200, 17-20, 1729-1745 (2011) · Zbl 1228.74093 · doi:10.1016/j.cma.2011.01.002
[41] Raabe, D.; Sachtleber, M.; Weiland, H.; Scheele, G.; Zhao, Z., Grain-scale micromechanics of polycrystal surfaces during plastic straining, Acta Mater, 51, 6, 1539-1560 (2003) · doi:10.1016/S1359-6454(02)00557-8
[42] Ranganathan, SI; Ostoja-Starzewski, M., Universal elastic anisotropy index, Phys Rev Lett, 101, 5, 055504 (2008) · doi:10.1103/PhysRevLett.101.055504
[43] Reese, S.; Wriggers, P., A stabilization technique to avoid hourglassing in finite elasticity, Int J Numer Meth Eng, 48, 1, 79-109 (2000) · Zbl 0983.74070 · doi:10.1002/(SICI)1097-0207(20000510)48:1<79::AID-NME869>3.0.CO;2-D
[44] Sansour, C., On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy, Eur J Mech A/Solids, 27, 1, 28-39 (2008) · Zbl 1129.74009 · doi:10.1016/j.euromechsol.2007.04.001
[45] Schröder J (2014) A numerical two-scale homogenization scheme: the fe 2-method. In: Plasticity and beyond, pp. 1-64. Springer · Zbl 1291.74153
[46] Schröder, J.; Keip, M-A, Two-scale homogenization of electromechanically coupled boundary value problems, Comput Mech, 50, 2, 229-244 (2012) · Zbl 1398.74106 · doi:10.1007/s00466-012-0715-9
[47] Schröder, J.; Neff, P., Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions, Int J Solids Struct, 40, 2, 401-445 (2003) · Zbl 1033.74005 · doi:10.1016/S0020-7683(02)00458-4
[48] Schröder, J.; Neff, P.; Balzani, D., A variational approach for materially stable anisotropic hyperelasticity, Int J Solids Struct, 42, 15, 4352-4371 (2005) · Zbl 1119.74321 · doi:10.1016/j.ijsolstr.2004.11.021
[49] Schröder, J.; Viebahn, N.; Balzani, D.; Wriggers, P., A novel mixed finite element for finite anisotropic elasticity; the ska-element simplified kinematics for anisotropy, Comput Methods Appl Mech Eng, 310, 475-494 (2016) · Zbl 1439.74086 · doi:10.1016/j.cma.2016.06.029
[50] Schröder, J.; Wriggers, P.; Balzani, D., A new mixed finite element based on different approximations of the minors of deformation tensors, Comput Methods Appl Mech Eng, 200, 49-52, 3583-3600 (2011) · Zbl 1239.74012 · doi:10.1016/j.cma.2011.08.009
[51] Schroeder, J.; Labusch, M.; Keip, M-A, Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: Fe2-scheme: localization and homogenization, Comput Methods Appl Mech Eng, 302, 253-280 (2016) · Zbl 1425.74393 · doi:10.1016/j.cma.2015.10.005
[52] Simo, J.; Armero, F.; Taylor, R., Improved versions of assumed enhanced strain tri-linear elements for 3d finite deformation problems, Comput Methods Appl Mech Eng, 110, 3-4, 359-386 (1993) · Zbl 0846.73068 · doi:10.1016/0045-7825(93)90215-J
[53] Simo, J.; Taylor, RL; Pister, K., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput Methods Appl Mech Eng, 51, 1-3, 177-208 (1985) · Zbl 0554.73036 · doi:10.1016/0045-7825(85)90033-7
[54] Simo, J-C; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int J Numer Meth Eng, 33, 7, 1413-1449 (1992) · Zbl 0768.73082 · doi:10.1002/nme.1620330705
[55] Šolinc, U.; Korelc, J., A simple way to improved formulation of \(fe^2\) analysis, Comput Mech, 56, 5, 905-915 (2015) · Zbl 1329.65279 · doi:10.1007/s00466-015-1208-4
[56] Washizu K (1955) On the variational principles of elasticity and plasticity. Technical report, Massachusetts Inst of Tech Cambridge Aeroelastic and Structures Research Lab · Zbl 0064.37703
[57] Wriggers P (2008) Nonlinear finite element methods. Springer Science & Business Media, Berlin · Zbl 1153.74001
[58] Wriggers, P.; Hudobivnik, B., A low order virtual element formulation for finite elasto-plastic deformations, Comput Methods Appl Mech Eng, 327, 459-477 (2017) · Zbl 1439.74070 · doi:10.1016/j.cma.2017.08.053
[59] Wriggers P, Hudobivnik B, Korelc J (2018) Efficient low order virtual elements for anisotropic materials at finite strains. In: Advances in computational plasticity, pp. 417-434. Springer · Zbl 1493.74112
[60] Wriggers P, Hudobivnik B, Schröder J (2018) Finite and virtual element formulations for large strain anisotropic material with inextensive fibers. In: Multiscale modeling of heterogeneous structures, pp. 205-231. Springer
[61] Wriggers, P.; Reddy, B.; Rust, W.; Hudobivnik, B., Efficient virtual element formulations for compressible and incompressible finite deformations, Comput Mech, 60, 2, 253-268 (2017) · Zbl 1386.74146 · doi:10.1007/s00466-017-1405-4
[62] Wriggers, P.; Schröder, J.; Auricchio, F., Finite element formulations for large strain anisotropic material with inextensible fibers, Adv Model Simul Eng Sci, 3, 1, 1-18 (2016) · doi:10.1186/s40323-016-0079-3
[63] Zhang, C.; Li, H.; Eisenlohr, P.; Liu, W.; Boehlert, C.; Crimp, M.; Bieler, T., Effect of realistic 3d microstructure in crystal plasticity finite element analysis of polycrystalline Ti-5Al-2.5 Sn, Int J Plast, 69, 21-35 (2015) · doi:10.1016/j.ijplas.2015.01.003
[64] Zienkiewicz, O.; Taylor, R.; Too, J., Reduced integration technique in general analysis of plates and shells, Int J Numer Meth Eng, 3, 2, 275-290 (1971) · Zbl 0253.73048 · doi:10.1002/nme.1620030211
[65] Zienkiewicz, OC; Taylor, RL, The finite element method for solid and structural mechanics (2005), Amsterdam: Elsevier, Amsterdam · Zbl 1084.74001
[66] Zupan, N.; Korelc, J., Sensitivity analysis based multi-scale methods of coupled path-dependent problems, Comput Mech, 65, 1, 229-248 (2020) · Zbl 1504.74083 · doi:10.1007/s00466-019-01762-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.