×

Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model. (English) Zbl 07775013

Summary: We develop the elastic constitutive law for the resultant statically and kinematically exact, nonlinear, 6-parameter shell theory. The Cosserat plane stress equations are integrated through-the-thickness under assumption of the Reissner-Mindlin kinematics. The resulting constitutive equations for stress resultant and couple resultants are expressed in terms of two micropolar constants: the micropolar modulus \(G_c\) and the micropolar characteristic length \(l\). Based on FEM simulations we evaluate their influence on the behaviour of shell models in the geometrically nonlinear range of deformations.
{© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim}

MSC:

74Kxx Thin bodies, structures
74Axx Generalities, axiomatics, foundations of continuum mechanics of solids
74Sxx Numerical and other methods in solid mechanics

Software:

HSL
Full Text: DOI

References:

[1] H.Altenbach and V. A.Eremeyev, On the linear theory of micropolar plates, Z. Angew. Math. Mech.89, 242-256 (2009). · Zbl 1160.74030
[2] J.Chróścielewski and W.Witkowski, FEM analysis of Cosserat plates and shells based on some constitutive relations, Z. Angew. Math. Mech.91, 400-412 (2011). · Zbl 1306.74059
[3] J.Chróścielewski and W.Witkowski, On some constitutive equations for micropolar plates, Z. Angew. Math. Mech.90, 53-64 (2010). · Zbl 1355.74007
[4] E.Reissner, Linear and nonlinear theory of shells. In: Thin Shell Structures, edited by Y.C.Fung (ed.) and E.E.Sechler (ed.), 29-44 (Prentice‐Hall, Englewood Cliffs, 1974).
[5] A.Libai and J. G.Simmonds, The Nonlinear Theory of Elastic Shells, 2nd edn, (Cambridge University Press, Cambridge, 1998). · Zbl 0918.73003
[6] V.Konopińska and W.Pietraszkiewicz, Exact resultant equilibrium conditions in the non‐linear theory of branching and self‐intersecting shells, Int. J. Solids Struct.44, 52-369 (2007). · Zbl 1119.74030
[7] W.Pietraszkiewicz and V.Konopińska, Drilling couples and refined constitutive equations in the resultant geometrically non‐linear theory of elastic shells, Int. J. Solids Struct, 51(11), 2133-2143, (2014).
[8] V. A.Eremeyev and L. P.Lebedev, Existence theorems in the linear theory of micropolar shells, Z. Angew. Math. Mech, 91(6), 468-476, (2011). · Zbl 1316.74034
[9] V. A.Eremeyev, L. P.Lebedev, and M. J.Cloud, The Rayleigh and Courant variational principles in the six‐parameter shell theory, Mathematics and Mechanics of Solids, DOI: 10.1177/1081286514553369. · Zbl 1330.74118
[10] M.Bîrsan and P.Neff, Existence of minimizers in the geometrically non‐linear 6‐parameter resultant shell theory with drilling rotations, Mathematics and Mechanics of Solids, DOI: 10.1177/1081286512466659. · Zbl 1364.74060
[11] M.Bîrsan and P.Neff, Existence theorems in the geometrically non‐linear 6‐parameter theory of elastic plates, J Elast112, 185-198 (2013). · Zbl 1267.74073
[12] J.Chróścielewski, J.Makowski, and W.Pietraszkiewicz, Statics and Dynamics of Multifold Shells: Nonlinear Theory and Finite Element Method, in Polish (Wydawnictwo IPPT PAN, Warsaw, 2004).
[13] J.Chróścielewski, J.Makowski, and H.Stumpf, Genuinely resultant shell finite elements accounting for geometric and material non‐linearity, Int. J. Numer. Meth. Eng.35, 63-94 (1992). · Zbl 0780.73075
[14] J.Chróścielewski, W.Pietraszkiewicz, and W.Witkowski, On shear correction factors in the non‐linear theory of elastic shells, Int. J. Solids Struct.47, 3537-3545 (2010). · Zbl 1203.74095
[15] J.Chróścielewski and W.Witkowski, 4‐node semi‐EAS element in 6-field nonlinear theory of shells, Int. J. Numer. Meth. Eng.68, 1137-1179 (2006). · Zbl 1157.74037
[16] J.Chróścielewski, I.Lubowiecka, Cz.Szymczak, and W.Witkowski, On some aspects of torsional buckling of thin‐walled I‐beam columns, Computers and Structures, 84, 1946-1957 (2006).
[17] W.Witkowski, 4‐Node combined shell element with semi‐EAS‐ANS strain interpolations in 6‐parameter shell theories with drilling degrees of freedom, Computational Mechanics, 43, 307-319 (2009). · Zbl 1162.74479
[18] J.Chróścielewski, I.Kreja, A.Sabik and W.Witkowski, Modeling of composite shells in 6‐parameter nonlinear theory with drilling degree of freedom, Mech. Adv. Mater. Struct.18, 403-419 (2011).
[19] J. N.Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition (CRC, Boca Raton, London, New York, Washington D.C., 2003).
[20] S.Burzyński, J.Chróścielewski, and W.Witkowski, Elastoplastic material law in 6‐parameter nonlinear shell theory, Shell Structures: Theory and Applications, Vol 3, edited by W.Pietraszkiewicz (ed.) and J.Górski (ed.), 377-380 (CRC Press, London2014).
[21] S.Burzyński, J.Chróścielewski, and W.Witkowski, Elastoplastic law of Cosserat type in shell theory with drilling rotation, Mathematics and Mechanics of Solids, DOI: 10.1177/1081286514554351 · Zbl 1330.74117
[22] W.Nowacki, Couple‐stresses in the theory of thermoelasticity. In: Irreversible aspects of continuum mechanics and transfer of physical characteristics in moving fluids. IUTAM Symposia Vienna 1966, edited by H.Parkus (ed.) and L. I.Sedov (ed.). 259-278, (Springer‐Verlag, Wien, 1968), pdf available at http://bcpw.bg.pw.edu.pl/Content/970/IUTAM_Symposia_Vienna_1966_str259_278.pdf · Zbl 0188.59101
[23] W.Pietraszkiewicz and J.Badur, Finite rotations in the description of continuum deformation. Int. J. Engineering Sci.21, 1097-1115 (1983). · Zbl 0521.73033
[24] W.Pietraszkiewicz and V. A.Eremeyev, On vectorially parameterized natural strain measures of the non‐linear Cosserat continuum, International Journal of Solids and Structures, 46(11), 2477-2480 (2009). · Zbl 1217.74012
[25] J.Chróścielewski, I.Lubowiecka, and W.Pietraszkiewicz, FEM and time stepping procedures in non‐linear dynamics of flexible branched shell structures. In Theories of Plates and Shells, R.Kienzler (ed.), H.Altenbach (ed.), and I.Ott (ed.) (eds). Critical Review and New Applications in Lecture Notes in Applied and Computational Mechanics, vol. 16 (Springer: Tokyo, Berlin, 2004) pp 21-28. · Zbl 1181.74133
[26] J.Chróścielewski and W.Witkowski, Discrepancies of energy values in dynamics of three intersecting plates, Int. J. Numer. Meth. Biomed. Engng.26, 1188-1202 (2010). · Zbl 1426.74212
[27] R.deBorst, Simulation of strain localization: a reappraisal of the Cosserat continuum, Engineering Computations8, 317-322 (1991).
[28] J.Jeong, H.Ramezani, I.Münch, and P.Neff, A numerical study for linear isotropic Cosserat elasticity with conformally invariant curvature, Z. Angew. Math. Mech.89(7), 552-569 (2009). · Zbl 1167.74004
[29] P.Neff, A geometrically exact Cosserat shell‐model including size effects, avoiding degeneracy in the thin shell limit. I. Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus, Contin. Mech. Thermodyn.16(6), 577-628 (2004). · Zbl 1158.74419
[30] P.Neff, A geometrically exact planar Cosserat shell‐model with microstructure: existence of minimizers for zero Cosserat couple modulus, Math. Models MethodsAppl. Sci.17(3), 363-392 (2007). · Zbl 1119.74029
[31] P.Neff and K.Chełmiński, A geometrically exact Cosserat shell model for defective elastic crystals. Justification via Γ‐convergence, Interfaces Free Bound.9(4), 455-492 (2007). · Zbl 1137.74014
[32] P.Neff, Kwon‐IlHong, and J.Jeong, The Reissner‐Mindlin plate is the Γ ‐limit of Cosserat elasticity, Math. Models Methods Appl. Sci.20(9), 1553-1590 (2010). · Zbl 1253.74004
[33] P.Neff, The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy‐stress tensor is symmetric, Z. Angew. Math. Mech.86(11), 892-912 (2006). · Zbl 1104.74007
[34] P.Neff, A.Fischle, and I.Münch, Symmetric Cauchy stresses do not imply symmetric Biot strains in weak formulations of isotropic hyperelasticity with rotational degrees of freedom, Acta Mechanica197(1‐2), 19-30 (2008). · Zbl 1139.74007
[35] O.Sander, P.Neff, and M.Bîrsan, Numerical treatment of a geometrically nonlinear planar Cosserat shell model, arXiv:1412.3668v1 [math.NA] 11 Dec 2014.
[36] R HMacNeal and R. L.Harder, A proposed standard set of problems to test finite element accuracy, Finite Elements in Analysis and Design1, 3-20 (1985).
[37] Y.Başar and Y.Ding, Finite rotation elements for the non‐linear analysis of thin shell structures, International Journal of Solids and Structures26, 83-97 (1990). · Zbl 0707.73076
[38] HSL, a collection of Fortran codes for large‐scale scientific computation, http://www.hsl.rl.ac.uk/
[39] K.Wiśniewski, Finite Rotation Shells: Basic Equations and Finite Elements for Reissner Kinematics (Springer, Berlin, 2010). · Zbl 1201.74004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.