×

An asymptotic preserving scheme on staggered grids for the barotropic Euler system in low Mach regimes. (English) Zbl 07771429

Summary: We present a new scheme for the simulation of the barotropic Euler equation in low Mach regimes. The method uses two main ingredients. First, the system is treated with a suitable time splitting strategy, directly inspired from the previous study that separates low and fast waves. Second, we adapt a numerical scheme where the discrete densities and velocities are stored on staggered grids, in the spirit of MAC methods, and with numerical fluxes derived from the kinetic approach. We bring out the main properties of the scheme in terms of consistency, stability, and asymptotic behavior, and we present a series of numerical experiments to validate the method.
{© 2020 Wiley Periodicals, Inc.}

MSC:

65-XX Numerical analysis
35-XX Partial differential equations

References:

[1] A.Majda, Compressible fluid flow and systems of conservation laws in several space variables, Springer Science +Business Media LLC, Berlin, 1984. · Zbl 0537.76001
[2] S.Klainerman, A.Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math. vol. 34 (1981) pp. 481-524. · Zbl 0476.76068
[3] S.Klainerman, A.Majda, Compressible and incompressible fluids, Commun. Pure Appl. Math. vol. 35 (1982) pp. 629-651. · Zbl 0478.76091
[4] S.Ukai, The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ. vol. 26 (1986) pp. 323-331. · Zbl 0618.76074
[5] T.Alazard, A minicourse on the low Mach number limit, Discrete Contin. Dyn. Syst. Ser. S vol. 1 (2008) pp. 365-404. · Zbl 1160.35060
[6] H.Guillard, A.Murrone, On the behavior of upwind schemes in the low Mach number limit. II: Godunov type schemes, Comput. Fluids vol. 33 (2004) pp. 655-675. · Zbl 1049.76040
[7] H.Guillard, C.Viozat, On the behavior of upwind schemes in the low Mach number limit, Comput. Fluids vol. 28 (1999) pp. 63-86. · Zbl 0963.76062
[8] W.Barsukow et al., A numerical scheme for the compressible low‐Mach number regime of ideal fluid dynamics, J. Sci. Comput. vol. 72 (2017) pp. 623-646. · Zbl 1459.65166
[9] S.Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J. Comput. Phys. vol. 229 (2010) pp. 978-1016. · Zbl 1329.76228
[10] S.Dellacherie, Etude et discrétisation de modèles cinétiques et de modèles fluides à bas nombre de Mach, Habilitation à diriger les recherches, Université Pierre et Marie Curie, Paris VI, 2011.
[11] S.Dellacherie et al., Construction of modified Godunov‐type schemes accurate at any Mach number for the compressible Euler system, Math. Models Methods Appl. Sci. vol. 26 (2016) pp. 2525-2615. · Zbl 1382.76183
[12] S.Dellacherie, P.Omnes, F.Rieper, The influence of cell geometry on the Godunov scheme applied to the linear wave equation, J. Comput. Phys. vol. 229 (2010) pp. 5315-5338. · Zbl 1206.65208
[13] H.Guillard, B.Nkonga, “On the behaviour of upwind schemes in the low Mach number limit: A review,” in Handbook of numerical methods for hyperbolic problems, Handb. Numer. Anal., vol. 18, Elsevier, North‐Holland, Amsterdam, 2017, pp. 203-231. · Zbl 1366.76061
[14] E.Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, J. Comput. Phys. vol. 72 (1987) pp. 189-209.
[15] S.Jin, Efficient asymptotic‐preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput. vol. 21 (1999) pp. 441-454. · Zbl 0947.82008
[16] S.Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Riv. Mat. Univ. Parma vol. 3 (2012) pp. 177-216. · Zbl 1259.82079
[17] P.Degond, M.Tang, All speed scheme for the low Mach number limit of the isentropic Euler equations, Comm. Comput. Phys. vol. 10 (2011) pp. 1-31. · Zbl 1364.76129
[18] G.Dimarco, R.Loubère, M.‐H.Vignal, Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit, SIAM J. Sci. Comput. vol. 39 (2017) pp. A2099-A2128. · Zbl 1391.76401
[19] J.Haack, S.Jin, J.‐G.Liu, An all‐speed asymptotic‐preserving method for the isentropic Euler and Navier-Stokes equations, Commun. Comput. Phys. vol. 12 (2012) pp. 955-980. · Zbl 1373.76284
[20] R.Klein, Semi‐implicit extension of a Godunov‐type scheme based on low Mach number asymptotics. I. One‐dimensional flow, J. Comput. Phys. vol. 121 (1995) pp. 213-237. · Zbl 0842.76053
[21] S.Noelle et al., A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics, SIAM J. Sci. Comput. vol. 36 (2014) pp. B989-B1024. · Zbl 1321.76053
[22] F.Berthelin, T.Goudon, S.Minjeaud, Kinetic schemes on staggered grids for barotropic Euler models: Entropy‐stability analysis, Math. Comput. vol. 84 (2015) pp. 2221-2262. · Zbl 1329.76198
[23] F. H.Harlow, J. E.Welch, Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface, Phys. Fluids vol. 8 (1965) pp. 2182-2189. · Zbl 1180.76043
[24] F.Berthelin, T.Goudon, S.Minjeaud, Multifluid flows: A kinetic approach, J. Sci. Comput. vol. 66 (2016) pp. 792-824. · Zbl 06555598
[25] L.GastaldoR.Herbin, W.Kheriji, C.Lapuerta, J.‐C.Latche, “Staggered discretizations, pressure correction schemes and all speed barotropic flows,” in Finite volumes for complex applications VI, Problems and perspectives, Prague, Czech Republic, vol. 4, Springer, Heidelberg, 2011, pp. 839-855. · Zbl 1246.76094
[26] R.Herbin, W.Kheriji, J.‐C.Latché, Staggered schemes for all speed flows, ESAIM:Proc vol. 35 (2012) pp. 122-150. · Zbl 1357.76038
[27] R.Herbin, J.‐C.Latché, T. T.Nguyen, “Explicit staggered schemes for the compressible Euler equations,” in Applied mathematics in Savoie—AMIS 2012: Multiphase flow in industrial and environmental engineering, ESAIM Proc., vol. 40, EDP Sci., Les Ulis, 2013, pp. 83-102. · Zbl 1329.76206
[28] C.Zaza, Contribution à la résolution numérique d’écoulements à tout nombre de Mach et au couplage fluide‐poreux en vue de la simulation d’écoulements diphasiques homogénéisés dans les composants nucléaires. PhD thesis, Univ. Aix‐Marseille, 2015.
[29] F.Coron, B.Perthame, Numerical passage from kinetic to fluid equations, SIAM J. Numer. Anal. vol. 28 (1991) pp. 26-42. · Zbl 0718.76086
[30] S. M.Deshpande, Kinetic theory based new upwind methods for inviscid compressible flows. In AIAA 24th Aerospace Science Meeting, January 6-9, 1986, Nevada, USA, 1986. AIAA paper 86‐0275.
[31] J.Llobell, Staggered discretization for conservation laws of gas dynamics. PhD thesis, Université Côte d’Azur, Inria, CNRS, LJAD, 2018.
[32] F.BouchutY.Jobic, R.Natalini, R.Occelli, V.Pavan, Second‐order entropy satisfying BGK‐FVS schemes for incompressible Navier‐stokes equations, SMAI J. Comput. Math vol. 4 (2018), pp. 1-56. · Zbl 1416.76243
[33] H.Zakerzadeh, S.Noelle, A note on the stability of implicit-explicit flux‐splittings for stiff systems of hyperbolic conservation laws. Technical report, Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 2016. Report # 449.
[34] A.Majda, R.Pego, Stable viscosity matrices for systems of conservation laws, J. Diff. Eqs. vol. 56 (1985) pp. 229-262. · Zbl 0512.76067
[35] J.Schütz, S.Noelle, Flux splitting for stiff equations: A notion on stability, J. Sci. Comput. vol. 64 (2015) pp. 522-540. · Zbl 1327.35006
[36] F.Boyer, Analysis of the upwind finite volume method for general initial‐ and boundary‐value transport problems, IMA J. Numer. Anal. vol. 32(4) (2012) pp. 1404-1439. · Zbl 1257.65051
[37] R.LeVeque, Numerical methods for conservation laws, Birkhauser, Basel, 1992. · Zbl 0847.65053
[38] K.Kaiser et al., A new stable splitting for the isentropic Euler equations, J. Sci. Comput. vol. 70 (2017) pp. 1390-1407. · Zbl 1367.35114
[39] E.Weinan, C.‐W.Shu, A numerical resolution study of high order essentially non‐oscillatory schemes applied to incompressible flow, J. Comput. Phys. vol. 110 (1993) pp. 39-46. · Zbl 0790.76055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.