×

A self-defocusing effect in series of networks for nano all-optical switching. (English) Zbl 07767846

Summary: A theoretical design of all-optical switches based on series of networks (SNs) is proposed. With increment of the fractal generation, the density of loops (\(d_1: d_2 = 1:2\)) in networks, which can efficiently produce antiresonances, increases exponentially, increasing switching efficiency to a high level. To acquire superior performance of the switching efficiency, the nonlinear material with negative nonlinear refractive index was chosen to insert into the networks, inducing self-defocusing effect and decreasing the transmission. Further, the SNs with a defective waveguide length create ultra-strong photonic localization and reduce the threshold energy. The switching efficiency of just the third type of SN was calculated and found to be approximately \(5.25 \times 10^{26}\), which is nine orders of magnitude higher than that previously reported. The threshold energy of just the third type of SN is about 0.66 zJ, which is one order of magnitude lower than that reported previously. Moreover, the switching efficiency increases monotonously, and the threshold energy decreases rapidly with increasing fractal generation.
© 2021 Wiley-VCH GmbH

MSC:

81-XX Quantum theory
Full Text: DOI

References:

[1] J.Leuthold, C.Koos, W.Freude, Nat. Photonics2010, 4, 535.
[2] D.Hillerkuss, R.Schmogrow, T.Schellinger, M.Jordan, M.Winter, G.Huber, T.Vallaitis, R.Bonk, P.Kleinow, F.Frey, M.Roeger, S.Koenig, A.Ludwig, A.Marculescu, J.Li, M.Hoh, M.Dreschmann, J.Meyer, S.Ben Ezra, N.Narkiss, B.Nebendahl, F.Parmigiani, P.Petropoulos, B.Resan, A.Oehler, K.Weingarten, T.Ellermeyer, J.Lutz, M.Moeller, M.Huebner, J.Becker, C.Koos, W.Freude, J.Leuthold, Nat. Photonics2011, 5, 364.
[3] J.Clark, G.Lanzani, Nat. Photonics2010, 4, 438.
[4] X.Hu, P.Jiang, C.Ding, H.Yang, Q.Gong, Nat. Photonics2008, 2, 185.
[5] D.Milam, M.Weber, A.Glass, Appl. Phys. Lett.1977, 31, 822.
[6] R.Adair, L.Chase, S. A.Payne, Phys. Rev. B1989, 39, 3337.
[7] Y.Hamanaka, A.Nakamura, S.Omi, N.Del Fatti, F.Vallee, C.Flytzanis, Appl. Phys. Lett.1999, 75, 1712.
[8] R.DeSalvo, D. J.Hagan, M.Sheik‐Bahae, G.Stegeman, E. W.Van Stryland, H.Vanherzeele, Optics Lett.1992, 17, 28.
[9] B.Zhou, M.Bache, Optics Lett.2015, 40, 4257.
[10] M.Seidel, J.Brons, G.Arisholm, K.Fritsch, V.Pervak, O.Pronin, Sci. Rep.2017, 7, 1.
[11] C.‐L.Wu, S.‐P.Su, G.‐R.Lin, Laser Photon. Rev.2014, 8, 766.
[12] C.‐L.Wu, Y.‐H.Lin, S.‐P.Su, B.‐J.Huang, C.‐T.Tsai, H.‐Y.Wang, Y.‐C.Chi, C.‐I.Wu, G.‐R.Lin, ACS Photon.2015, 2, 1141.
[13] G.‐R.Lin, S.‐P.Su, C.‐L.Wu, Y.‐H.Lin, B.‐J.Huang, H.‐Y.Wang, C.‐T.Tsai, C.‐I.Wu, Y.‐C.Chi, Sci. Rep.2015, 5, 1.
[14] H.Lu, X.Liu, L.Wang, Y.Gong, D.Mao, Opt. Exp.2011, 19, 2910.
[15] A.Ciattoni, C.Rizza, E.Palange, Phys. Rev. A2011, 83, 043813.
[16] B.Born, S.Geoffroy‐Gagnon, J. D.Krupa, I. R.Hristovski, C. M.Collier, J. F.Holzman, ACS Photon.2016, 3, 1095.
[17] Z.Chai, X.Hu, F.Wang, C.Li, Y.Ao, Y.Wu, K.Shi, H.Yang, Q.Gong, Laser Photon. Rev.2017, 11, 1700042.
[18] L.Lu, W.Wang, L.Wu, X.Jiang, Y.Xiang, J.Li, D.Fan, H.Zhang, ACS Photon.2017, 4, 2852.
[19] B.‐J.Huang, C.‐T.Tsai, Y.‐H.Lin, C.‐H.Cheng, H.‐Y.Wang, Y.‐C.Chi, P.‐H.Chang, C.‐I.Wu, G.‐R.Lin, ACS Photon.2018, 5, 2251.
[20] A.Szöke, V.Daneu, J.Goldhar, N.Kurnit, Appl. Phys. Lett.1969, 15, 376.
[21] K.Nozaki, A.Shinya, S.Matsuo, T.Sato, E.Kuramochi, M.Notomi, Opt. Exp.2013, 21, 11877.
[22] Y.Zhang, X.Hu, H.Yang, Q.Gong, Appl. Phys. Lett.2011, 99, 141113.
[23] K. M.Dani, Z.Ku, P. C.Upadhya, R. P.Prasankumar, S.Brueck, A. J.Taylor, Nano Lett.2009, 9, 3565.
[24] S.‐P.Su, C.‐L.Wu, C.‐H.Cheng, B.‐J.Huang, H.‐Y.Wang, C.‐T.Tsai, Y.‐H.Lin, Y.‐C.Chi, M.‐H.Shih, C.‐K.Lee, G.‐R.Lin, ACS Photon.2016, 3, 806.
[25] R. A.Pala, K. T.Shimizu, N. A.Melosh, M. L.Brongersma, Nano Lett.2008, 8, 1506.
[26] M.Ren, B.Jia, J.‐Y.Ou, E.Plum, J.Zhang, K. F.MacDonald, A. E.Nikolaenko, J.Xu, M.Gu, N. I.Zheludev, Adv. Mater.2011, 23, 5540.
[27] R.Miao, Y.Hu, H.Ouyang, Y.Tang, C.Zhang, J.You, X.Zheng, Z.Xu, X.Cheng, T.Jiang, Nanoscale2019, 11, 14598.
[28] J.Wu, X.Yang, Ann. der Phys.2019, 531, 1800258.
[29] Z.‐Y.Wang, X.Yang, Phys. Rev. B2007, 76, 235104.
[30] J.Lu, X.Yang, G.Zhang, L.Cai, Phys. Lett. A2011, 375, 3904.
[31] L.Cai, X.Yang, J.Lu, J. Electromag. Waves Appl.2011, 25, 147.
[32] Q.Xiao, X.Yang, J.Lu, C.Liu, Opt. Commun.2012, 285, 3775.
[33] J.Lu, X.Yang, L.Cai, Opt. Commun.2012, 285, 459.
[34] H.Li, J. Phys. Chem. Ref. Data1976, 5, 329.
[35] M.Zhang, X.Yang, Q.Wang, X.Yao, D.Deng, H.Liu, Z.Wei, Opt. Commun.2020, 126091.
[36] X.Xu, X.Yang, S.Wang, T. C.Liu, D.Deng, Opt. Exp.2015, 23, 27576.
[37] Y.Liu, Z.Hou, P.Hui, W.Sritrakool, Phys. Rev. B1999, 60, 13444.
[38] O.Mitomi, K.Kasaya, H.Miyazawa, IEEE J. Quantum Electron.1994, 30, 1787.
[39] Y.Nasu, M.Kohtoku, Y.Hibino, Opt. Lett.2005, 30, 723.
[40] K.Yasuhara, F.Yu, T.Ishigure, Opt. Exp.2017, 25, 8524.
[41] E. D.Palik, Handbook of Optical Constants of Solids, Vol. 3, Academic Press, San Diego, CA1998.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.