×

Subgroup analysis for functional partial linear regression model. (English. French summary) Zbl 07759544

Summary: In a functional partial linear regression (FPLR) model, where the response variable is scalar while the explanatory variables involve both infinite-dimensional functional predictors and finite-dimensional scalar covariates, the relationships between the response and the explanatory variables are often assumed to be the same for all subjects. This article relaxes this assumption and considers a subgroup analysis for the FPLR model, which allows the intercepts to vary for different subgroups from a heterogeneous population. By projecting the functional predictors onto the corresponding eigenspace, the subgroup analysis based on the FPLR model can be simplified to a framework that is similar to the classical subgroup analysis problem. To automatically identify subgroups among observations and estimate the regression parameters of interest, we combine the functional principal component analysis with the concave pairwise penalized approach and develop an ADMM algorithm for functional subgroup analysis. We also establish the consistency of the proposed estimators under mild conditions. Simulation experiments demonstrate that the concave penalized subgroup approach could potentially achieve substantial gains over the ordinary FPLR model. The analysis of data from a creative achievement study is used to illustrate the practical performance of the subgroup analysis for the FPLR model.
{© 2022 Statistical Society of Canada}

MSC:

62-XX Statistics

Software:

fda (R)
Full Text: DOI

References:

[1] Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1-122. · Zbl 1229.90122
[2] Cardot, H., Ferraty, F., & Sarda, P. (2003). Spline estimators for the functional linear model. Statistica Sinica, 13(3), 571-591. · Zbl 1050.62041
[3] Chen, Q., Yang, W., Li, W., Wei, D., Li, H., Lei, Q., Zhang, Q., & Qiu, J. (2014). Association of creative achievement with cognitive flexibility by a combined voxel‐based morphometry and resting‐state functional connectivity study. NeuroImage, 102(2), 474-483.
[4] Crambes, C., Kneip, A., & Sarda, P. (2009). Smoothing splines estimators for functional linear regression. The Annals of Statistics, 37(1), 35-72. · Zbl 1169.62027
[5] Fan, J. & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348-1360. · Zbl 1073.62547
[6] Hall, P. & Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics, 35(1), 70-91. · Zbl 1114.62048
[7] Horváth, L. & Kokoszka, P. (2012). Inference for Functional Data with Applications, Springer, New York. · Zbl 1279.62017
[8] Kong, D., Xue, K., Yao, F., & Zhang, H. H. (2016). Partially functional linear regression in high dimensions. Biometrika, 103(1), 147-159. · Zbl 1452.62500
[9] Li, Y. & Hsing, T. (2010). Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. The Annals of Statistics, 38(6), 3321-3351. · Zbl 1204.62067
[10] Lin, Z. & Yao, F. (2021). Functional regression on the manifold with contamination. Biometrika, 108(1), 167-181. · Zbl 1462.62771
[11] Ma, H., Li, T., Zhu, H., & Zhu, Z. (2019). Quantile regression for functional partially linear model in ultra‐high dimensions. Computational Statistics & Data Analysis, 129, 135-147. · Zbl 1469.62114
[12] Ma, S. & Huang, J. (2017). A concave pairwise fusion approach to subgroup analysis. Journal of the American Statistical Association, 112(517), 410-423.
[13] McNicholas, P. D. (2010). Model‐based classification using latent Gaussian mixture models. Journal of Statistical Planning and Inference, 140(5), 1175-1181. · Zbl 1181.62095
[14] Peterson, A. & Müller, H.‐G. (2016). Functional data analysis for density functions by transformation to a Hilbert space. The Annals of Statistics, 44(1), 183-218. · Zbl 1331.62203
[15] Ramsay, J. & Silverman, B. (2005). Functional Data Analysis, Springer, New York. · Zbl 1079.62006
[16] Shen, J. & He, X. (2015). Inference for subgroup analysis with a structured logistic‐normal mixture model. Journal of the American Statistical Association, 110(509), 303-312. · Zbl 1373.62078
[17] Shin, H. (2009). Partial functional linear regression. Journal of Statistical Planning and Inference, 139(10), 3405-3418. · Zbl 1168.62358
[18] Silverman, B. W. (1996). Smoothed functional principal components analysis by choice of norm. The Annals of Statistics, 24(1), 1-24. · Zbl 0853.62044
[19] Tang, Q. & Cheng, L. (2014). Partial functional linear quantile regression. Science China Mathematics, 57(12), 2589-2608. · Zbl 1308.62086
[20] Wang, H., Li, R., & Tsai, C.‐H. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika, 94(3), 553-568. · Zbl 1135.62058
[21] Wei, S. & Kosorok, M. R. (2013). Latent supervised learning. Journal of the American Statistical Association, 108(503), 957-970. · Zbl 06224979
[22] Yao, F., Fu, Y., & Lee, T. (2011). Functional mixture regression. Biostatistics, 12(2), 341-353. · Zbl 1437.62665
[23] Yao, F., Müller, H.‐G., & Wang, J.‐L. (2005a). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100, 577-590. · Zbl 1117.62451
[24] Yao, F., Müller, H.‐G., & Wang, J.‐L. (2005b). Functional linear regression analysis for longitudinal data. The Annals of Statistics, 33(6), 2873-2903. · Zbl 1084.62096
[25] Yao, F., Sue‐Chee, S., & Wang, F. (2017). Regularized partially functional quantile regression. The Journal of Multivariate Analysis, 156, 39-56. · Zbl 1369.62083
[26] Yu, D., Kong, L., & Mizera, I. (2016). Partial functional linear quantile regression for neuroimaging data analysis. Neurocomputing, 195, 74-87.
[27] Zhang, C.‐H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38(2), 894-942. · Zbl 1183.62120
[28] Zhang, Y., Wang, H., & Zhu, Z. (2019). Robust subgroup identification. Statistica Sinica, 29, 1873-1889. · Zbl 1432.62194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.