×

Improved explicit hitting-sets for ROABPs. (English) Zbl 07758306

Byrka, Jarosław (ed.) et al., Approximation, randomization, and combinatorial optimization. Algorithms and techniques. 23rd international conference, APPROX 2020, and 24th international conference, RANDOM 2020, August 17–19, 2020, Virtual conference. Proceedings. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik. LIPIcs – Leibniz Int. Proc. Inform. 176, Article 4, 16 p. (2020).
Summary: We give improved explicit constructions of hitting-sets for read-once oblivious algebraic branching programs (ROABPs) and related models. For ROABPs in an unknown variable order, our hitting-set has size polynomial in \((nr)^{\frac{\log n}{\max\{1,\log\log n-\log\log r\}}}d\) over a field whose characteristic is zero or large enough, where \(n\) is the number of variables, \(d\) is the individual degree, and \(r\) is the width of the ROABP. A similar improved construction works over fields of arbitrary characteristic with a weaker size bound.
Based on a result by P. Bisht and N. Saxena [Electronic Colloquium on Computational Complexity (ECCC), 2020. https://eccc.weizmann.ac.il/report/2020/042], we also give an improved explicit construction of hitting-sets for sum of several ROABPs. In particular, when the characteristic of the field is zero or large enough, we give polynomial-size explicit hitting-sets for sum of constantly many log-variate ROABPs of width \(r=2^{O(\log d/\log\log d)}\).
Finally, we give improved explicit hitting-sets for polynomials computable by width-\(r\) ROABPs in any variable order, also known as any-order ROABPs. Our hitting-set has polynomial size for width \(r\) up to \(2^{O(\log(nd)/\log\log(nd))}\) or \(2^{O(\log^{1-\varepsilon}(nd))}\), depending on the characteristic of the field. Previously, explicit hitting-sets of polynomial size are unknown for \(r=\omega(1)\).
For the entire collection see [Zbl 1445.68009].

MSC:

68W20 Randomized algorithms
68W25 Approximation algorithms
90C27 Combinatorial optimization
Full Text: DOI

References:

[1] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP and sum of set-multilinear circuits. SIAM Journal on Computing, 44(3):669-697, 2015. doi:10.1137/140975103. · Zbl 1327.68339 · doi:10.1137/140975103
[2] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set for set-depth-∆ formulas. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC 2013), pages 321-330, 2013. doi:10.1145/2488608.2488649. · Zbl 1293.94140 · doi:10.1145/2488608.2488649
[3] Pranav Bisht and Nitin Saxena. Poly-time blackbox identity testing for sum of log-variate constant-width ROABPs. Electronic Colloquium on Computational Complexity (ECCC), 2020. URL: https://eccc.weizmann.ac.il/report/2020/042.
[4] Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-optimal error for read-once branching programs. In Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC 2018), page 353-362, 2018. doi:10.1145/3188745.3188780. · Zbl 1427.68095 · doi:10.1145/3188745.3188780
[5] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences, 18(2):143-154, 1979. doi:10.1016/0022-0000(79)90044-8. · Zbl 0412.68090 · doi:10.1016/0022-0000(79)90044-8
[6] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing. Information Processing Letters, 7(4):193-195, 1978. doi:10.1016/0020-0190(78)90067-4. · Zbl 0397.68011 · doi:10.1016/0020-0190(78)90067-4
[7] Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena. Towards blackbox identity testing of log-variate circuits. In Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), pages 54:1-54:16, 2018. doi:10.4230/LIPIcs. ICALP.2018.54. · Zbl 1499.68390 · doi:10.4230/LIPIcs.ICALP.2018.54
[8] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear read-once algebraic branching programs, in any order. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014), pages 867-875, 2014. doi:10.1145/ 2591796.2591816. · Zbl 1315.68127 · doi:10.1145/2591796.2591816
[9] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-commutative and read-once oblivious algebraic branching programs. In Proceedings of the 54th Annual Symposium on Foundations of Computer Science (FOCS 2013), pages 243-252, 2013. doi:10.1109/FOCS.2013.34. · doi:10.1109/FOCS.2013.34
[10] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width, and any-order, read-once oblivious arithmetic branching programs. Theory of Computing, 13(2):1-21, 2017. doi:10.4086/toc.2017.v013a002. · Zbl 1378.68080 · doi:10.4086/toc.2017.v013a002
[11] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity test-ing for sum of read-once oblivious arithmetic branching programs. Computational Complexity, 26(4):835-880, 2017. doi:10.1007/s00037-016-0141-z. · Zbl 1382.68110 · doi:10.1007/s00037-016-0141-z
[12] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network algorithms. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC 1994), pages 356-364, 1994. doi:10.1145/195058.195190. · Zbl 1345.68269 · doi:10.1145/195058.195190
[13] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12(4):449-461, 1992. doi:10.1007/BF01305237. · Zbl 0759.68024 · doi:10.1007/BF01305237
[14] Øystein Ore. Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter Ser. I, 7(15):27, 1922. · JFM 48.0132.01
[15] Ran Raz and Omer Reingold. On recycling the randomness of states in space bounded computation. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC 1999), pages 159-168, 1999. doi:10.1145/301250.301294. · Zbl 1345.68135 · doi:10.1145/301250.301294
[16] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative models. Computational Complexity, 14(1):1-19, 2005. doi:10.1007/s00037-005-0188-8. · Zbl 1096.68070 · doi:10.1007/s00037-005-0188-8
[17] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In Proceedings of the 35th International Colloquium on Automata, Languages, and Programming (ICALP 2008), pages 60-71, 2008. doi:10.1007/978-3-540-70575-8_6. · Zbl 1152.68703 · doi:10.1007/978-3-540-70575-8_6
[18] Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS, 99:49-79, 2009. · Zbl 1188.68154
[19] Nitin Saxena. Progress on polynomial identity testing-II. In Perspectives in Computational Complexity, volume 26 of Progress in Computer Science and Applied Logic, pages 131-146. Springer, 2014. doi:10.1007/978-3-319-05446-9_7. · Zbl 1345.68182 · doi:10.1007/978-3-319-05446-9_7
[20] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM, 27(4):701-717, 1980. doi:10.1145/322217.322225. · Zbl 0452.68050 · doi:10.1145/322217.322225
[21] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207-388, 2010. doi:10.1561/0400000039. · Zbl 1205.68175 · doi:10.1561/0400000039
[22] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposiumon on Symbolic and Algebraic Computation, EUROSAM ’79, pages 216-226, 1979. doi:10.1007/3-540-09519-5_73. · Zbl 0418.68040 · doi:10.1007/3-540-09519-5_73
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.