×

Explaining large electromagnetic logarithms from loops of inflationary gravitons. (English) Zbl 07749070

Summary: Recent progress on nonlinear sigma models on de Sitter background has permitted the resummation of large inflationary logarithms by combining a variant of Starobinsky’s stochastic formalism with a variant of the renormalization group. We reconsider single graviton loop corrections to the photon wave function, and to the Coulomb potential, in light of these developments. Neither of the two 1-loop results have a stochastic explanation, however, the flow of a curvature-dependent field strength renormalization explains their factors of \(\ln(a)\). We speculate that the factor of \(\ln(Hr)\) in the Coulomb potential should not be considered as a leading logarithm effect.

MSC:

81-XX Quantum theory

References:

[1] V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett.33 (1981) 532 [INSPIRE].
[2] A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett.30 (1979) 682 [INSPIRE].
[3] Wang, CL; Woodard, RP, Excitation of Photons by Inflationary Gravitons, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.124054
[4] Glavan, D.; Miao, SP; Prokopec, T.; Woodard, RP, Electrodynamic Effects of Inflationary Gravitons, Class. Quant. Grav., 31 (2014) · Zbl 1300.83026 · doi:10.1088/0264-9381/31/17/175002
[5] S.P. Miao and R.P. Woodard, Gravitons Enhance Fermions during Inflation, Phys. Rev. D74 (2006) 024021 [gr-qc/0603135] [INSPIRE].
[6] Glavan, D.; Miao, SP; Prokopec, T.; Woodard, RP, Large logarithms from quantum gravitational corrections to a massless, minimally coupled scalar on de Sitter, JHEP, 03, 088 (2022) · Zbl 1522.83068 · doi:10.1007/JHEP03(2022)088
[7] Tan, L.; Tsamis, NC; Woodard, RP, How inflationary gravitons affect gravitational radiation, Phil. Trans. Roy. Soc. Lond. A, 380, 0187 (2021)
[8] Tan, L.; Tsamis, NC; Woodard, RP, How Inflationary Gravitons Affect the Force of Gravity, Universe, 8, 376 (2022) · doi:10.3390/universe8070376
[9] Miao, SP; Tsamis, NC; Woodard, RP, Summing inflationary logarithms in nonlinear sigma models, JHEP, 03, 069 (2022) · Zbl 1522.83448 · doi:10.1007/JHEP03(2022)069
[10] Woodard, RP; Yesilyurt, B., Unfinished business in a nonlinear sigma model on de Sitter background, JHEP, 06, 206 (2023) · Zbl 07716912 · doi:10.1007/JHEP06(2023)206
[11] C. Litos, R.P. Woodard and B. Yesilyurt, Large Inflationary Logarithms in a Nontrivial Nonlinear Sigma Model, arXiv:2306.15486 [INSPIRE].
[12] A.A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early universe, in Lecture Notes in Physics246, Springer (1986), pp. 107-126 [doi:10.1007/3-540-16452-9_6] [INSPIRE].
[13] A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev. D50 (1994) 6357 [astro-ph/9407016] [INSPIRE].
[14] D. Glavan and T. Prokopec, When tadpoles matter: One-loop corrections for spectator Higgs in inflation, arXiv:2306.11162 [INSPIRE].
[15] Kasdagli, E.; Ulloa, M.; Woodard, RP, Coincident massless, minimally coupled scalar correlators on general cosmological backgrounds, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.105023
[16] R.P. Woodard and B. Yesilyurt, Remembrance of Things Past, arXiv:2305.17641 [INSPIRE].
[17] Leonard, KE; Woodard, RP, Graviton Corrections to Vacuum Polarization during Inflation, Class. Quant. Grav., 31 (2014) · Zbl 1287.83050 · doi:10.1088/0264-9381/31/1/015010
[18] N.C. Tsamis and R.P. Woodard, The Quantum gravitational back reaction on inflation, Annals Phys.253 (1997) 1 [hep-ph/9602316] [INSPIRE]. · Zbl 0910.53071
[19] N.C. Tsamis and R.P. Woodard, One loop graviton selfenergy in a locally de Sitter background, Phys. Rev. D54 (1996) 2621 [hep-ph/9602317] [INSPIRE].
[20] N.C. Tsamis and R.P. Woodard, Dimensionally regulated graviton 1-point function in de Sitter, Annals Phys.321 (2006) 875 [gr-qc/0506056] [INSPIRE]. · Zbl 1092.83009
[21] S.P. Miao and R.P. Woodard, The Fermion self-energy during inflation, Class. Quant. Grav.23 (2006) 1721 [gr-qc/0511140] [INSPIRE]. · Zbl 1094.83016
[22] Kahya, EO; Woodard, RP, Quantum Gravity Corrections to the One Loop Scalar Self-Mass during Inflation, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.124005
[23] S.P. Miao, Quantum Gravitational Effects on Massive Fermions during Inflation. Part I, Phys. Rev. D86 (2012) 104051 [arXiv:1207.5241] [INSPIRE].
[24] Glavan, D.; Miao, SP; Prokopec, T.; Woodard, RP, Graviton Loop Corrections to Vacuum Polarization in de Sitter in a General Covariant Gauge, Class. Quant. Grav., 32 (2015) · Zbl 1327.83115 · doi:10.1088/0264-9381/32/19/195014
[25] Miao, SP; Tsamis, NC; Woodard, RP, Invariant measure of the one-loop quantum gravitational backreaction on inflation, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.125008
[26] Glavan, D.; Miao, SP; Prokopec, T.; Woodard, RP, Single graviton loop contribution to the self-mass of a massless, conformally coupled scalar on a de Sitter background, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.106016
[27] Boran, S.; Kahya, EO; Park, S., Quantum gravity corrections to the conformally coupled scalar self-mass-squared on de Sitter background, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.124054
[28] S. Boran, E.O. Kahya and S. Park, Quantum gravity corrections to the conformally coupled scalar self-mass-squared on de Sitter background. Part II. Kinetic conformal cross terms, Phys. Rev. D96 (2017) 025001 [arXiv:1704.05880] [INSPIRE].
[29] N.C. Tsamis and R.P. Woodard, The Structure of perturbative quantum gravity on a de Sitter background, Commun. Math. Phys.162 (1994) 217 [INSPIRE]. · Zbl 0809.53084
[30] R.P. Woodard, de Sitter breaking in field theory, in proceedings of the Deserfest: A Celebration of the Life and Works of Stanley Deser, Ann Arbor, MI, U.S.A., 3-5 April 2004, pp. 339-351 [gr-qc/0408002] [INSPIRE].
[31] B. Allen and M. Turyn, An Evaluation of the Graviton Propagator in de Sitter Space, Nucl. Phys. B292 (1987) 813 [INSPIRE].
[32] Hawking, SW; Hertog, T.; Turok, N., Gravitational waves in open de Sitter space, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.063502
[33] A. Higuchi and S.S. Kouris, The Covariant graviton propagator in de Sitter space-time, Class. Quant. Grav.18 (2001) 4317 [gr-qc/0107036] [INSPIRE]. · Zbl 0987.83016
[34] A. Higuchi and R.H. Weeks, The Physical graviton two point function in de Sitter space-time with S^3spatial sections, Class. Quant. Grav.20 (2003) 3005 [gr-qc/0212031] [INSPIRE]. · Zbl 1045.83034
[35] Miao, SP; Tsamis, NC; Woodard, RP, The Graviton Propagator in de Donder Gauge on de Sitter Background, J. Math. Phys., 52 (2011) · Zbl 1273.81168 · doi:10.1063/1.3664760
[36] Higuchi, A.; Marolf, D.; Morrison, IA, de Sitter invariance of the dS graviton vacuum, Class. Quant. Grav., 28 (2011) · Zbl 1232.83046 · doi:10.1088/0264-9381/28/24/245012
[37] Miao, SP; Tsamis, NC; Woodard, RP, Gauging away Physics, Class. Quant. Grav., 28 (2011) · Zbl 1252.83042 · doi:10.1088/0264-9381/28/24/245013
[38] I.A. Morrison, On cosmic hair and “de Sitter breaking” in linearized quantum gravity, arXiv:1302.1860 [INSPIRE].
[39] Miao, SP; Mora, PJ; Tsamis, NC; Woodard, RP, Perils of analytic continuation, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.104004
[40] Mora, PJ; Tsamis, NC; Woodard, RP, Graviton Propagator in a General Invariant Gauge on de Sitter, J. Math. Phys., 53 (2012) · Zbl 1278.83022 · doi:10.1063/1.4764882
[41] S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the Quantized Einstein-Maxwell System, Phys. Rev. Lett.32 (1974) 245 [INSPIRE].
[42] S. Deser and P. van Nieuwenhuizen, One Loop Divergences of Quantized Einstein-Maxwell Fields, Phys. Rev. D10 (1974) 401 [INSPIRE].
[43] N.N. Bogoliubov and O.S. Parasiuk, On the Multiplication of the causal function in the quantum theory of fields, Acta Math.97 (1957) 227 [INSPIRE]. · Zbl 0081.43302
[44] K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization, Commun. Math. Phys.2 (1966) 301 [INSPIRE]. · Zbl 1222.81219
[45] W. Zimmermann, The power counting theorem for minkowski metric, Commun. Math. Phys.11 (1968) 1 [INSPIRE].
[46] W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum space, Commun. Math. Phys.15 (1969) 208 [INSPIRE]. · Zbl 0192.61203
[47] Leonard, KE; Prokopec, T.; Woodard, RP, Covariant Vacuum Polarizations on de Sitter Background, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.044030
[48] Leonard, KE; Prokopec, T.; Woodard, RP, Representing the Vacuum Polarization on de Sitter, J. Math. Phys., 54 (2013) · Zbl 1281.81059 · doi:10.1063/1.4793987
[49] T. Prokopec, O. Tornkvist and R.P. Woodard, Photon mass from inflation, Phys. Rev. Lett.89 (2002) 101301 [astro-ph/0205331] [INSPIRE].
[50] T. Prokopec, O. Tornkvist and R.P. Woodard, One loop vacuum polarization in a locally de Sitter background, Annals Phys.303 (2003) 251 [gr-qc/0205130] [INSPIRE]. · Zbl 1028.81043
[51] J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys.2 (1961) 407 [INSPIRE]. · Zbl 0098.43503
[52] K.T. Mahanthappa, Multiple production of photons in quantum electrodynamics, Phys. Rev.126 (1962) 329 [INSPIRE]. · Zbl 0117.23906
[53] P.M. Bakshi and K.T. Mahanthappa, Expectation value formalism in quantum field theory. Part 1, J. Math. Phys.4 (1963) 1 [INSPIRE].
[54] P.M. Bakshi and K.T. Mahanthappa, Expectation value formalism in quantum field theory. Part 2, J. Math. Phys.4 (1963) 12 [INSPIRE]. · Zbl 0126.24401
[55] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz.47 (1964) 1515 [INSPIRE].
[56] K.-c. Chou, Z.-b. Su, B.-l. Hao and L. Yu, Equilibrium and Nonequilibrium Formalisms Made Unified, Phys. Rep.118 (1985) 1 [INSPIRE].
[57] R.D. Jordan, Effective Field Equations for Expectation Values, Phys. Rev. D33 (1986) 444 [INSPIRE].
[58] E. Calzetta and B.L. Hu, Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems, Phys. Rev. D35 (1987) 495 [INSPIRE].
[59] L.H. Ford and R.P. Woodard, Stress tensor correlators in the Schwinger-Keldysh formalism, Class. Quant. Grav.22 (2005) 1637 [gr-qc/0411003] [INSPIRE]. · Zbl 1073.83023
[60] Leonard, KE; Woodard, RP, Graviton Corrections to Maxwell’s Equations, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.104048
[61] Miao, SP; Prokopec, T.; Woodard, RP, Deducing Cosmological Observables from the S-matrix, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.104029
[62] Katuwal, S.; Woodard, RP, Gauge independent quantum gravitational corrections to Maxwell’s equation, JHEP, 10, 029 (2021) · Zbl 1476.83048 · doi:10.1007/JHEP10(2021)029
[63] D. Glavan, S.P. Miao, T. Prokopec and R.P. Woodard, Gauge Independent Logarithms from Inflationary Gravitons, UFIFT-QG-23-09, work in progress.
[64] Miao, SP; Prokopec, T.; Woodard, RP, Scalar enhancement of the photon electric field by the tail of the graviton propagator, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.025022
[65] A.F. Radkowski, Some aspects of the source description of gravitation, Ann. Phys.56 (1970) 319.
[66] N.C. Tsamis and R.P. Woodard, The Physical basis for infrared divergences in inflationary quantum gravity, Class. Quant. Grav.11 (1994) 2969 [INSPIRE].
[67] Wang, CL; Woodard, RP, One-loop quantum electrodynamic correction to the gravitational potentials on de Sitter spacetime, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.084008
[68] N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Ann. Inst. Henri Poincaré Phys. Theor. A9 (1968) 109 [INSPIRE]. · Zbl 0162.57802
[69] T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A360 (1978) 117 [INSPIRE].
[70] N.C. Tsamis and R.P. Woodard, Stochastic quantum gravitational inflation, Nucl. Phys. B724 (2005) 295 [gr-qc/0505115] [INSPIRE]. · Zbl 1178.83026
[71] R.P. Woodard, A Leading logarithm approximation for inflationary quantum field theory, Nucl. Phys. B Proc. Suppl.148 (2005) 108 [astro-ph/0502556] [INSPIRE].
[72] Prokopec, T.; Tsamis, NC; Woodard, RP, Stochastic Inflationary Scalar Electrodynamics, Annals Phys., 323, 1324 (2008) · Zbl 1151.81030 · doi:10.1016/j.aop.2007.08.008
[73] Kamenshchik, AY; Starobinsky, AA; Vardanyan, T., Massive scalar field in de Sitter spacetime: a two-loop calculation and a comparison with the stochastic approach, Eur. Phys. J. C, 82, 345 (2022) · doi:10.1140/epjc/s10052-022-10295-z
[74] T. Prokopec and E. Puchwein, Photon mass generation during inflation: de Sitter invariant case, JCAP04 (2004) 007 [astro-ph/0312274] [INSPIRE].
[75] Talebian, A.; Nassiri-Rad, A.; Firouzjahi, H., Stochastic effects in axion inflation and primordial black hole formation, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.103516
[76] Fujita, T.; Mukaida, K.; Tada, Y., Stochastic formalism for U(1) gauge fields in axion inflation, JCAP, 12, 026 (2022) · Zbl 1519.83098 · doi:10.1088/1475-7516/2022/12/026
[77] Vennin, V.; Starobinsky, AA, Correlation Functions in Stochastic Inflation, Eur. Phys. J. C, 75, 413 (2015) · doi:10.1140/epjc/s10052-015-3643-y
[78] Moss, I.; Rigopoulos, G., Effective long wavelength scalar dynamics in de Sitter, JCAP, 05, 009 (2017) · Zbl 1515.83411 · doi:10.1088/1475-7516/2017/05/009
[79] G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. Henri Poincaré Phys. Theor. A20 (1974) 69 [INSPIRE]. · Zbl 1422.83019
[80] A.O. Barvinsky and G.A. Vilkovisky, The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity, Phys. Rep.119 (1985) 1 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.