×

Parallel-in-time simulation of an electrical machine using MGRIT. (English) Zbl 07704918

Summary: We apply the multigrid-reduction-in-time (MGRIT) algorithm to an eddy current simulation of a two-dimensional induction machine supplied by a pulse-width-modulation signal. To resolve the fast-switching excitations, small time steps are needed, such that parallelization in time becomes highly relevant for reducing the simulation time. The MGRIT algorithm is an iterative method that allows calculating multiple time steps simultaneously by using a time-grid hierarchy. It is particularly well suited for introducing time parallelism in the simulation of electrical machines using existing application codes, as MGRIT is a non-intrusive approach that essentially uses the same time integrator as a traditional time-stepping algorithm. However, the key difficulty when using time-stepping routines of existing application codes for the MGRIT algorithm is that the cost of the time integrator on coarse time grids must be less expensive than on the fine grid to allow for speedup over sequential time stepping on the fine grid. To overcome this difficulty, we consider reducing the costs of the coarse-level problems by adding spatial coarsening. We investigate effects of spatial coarsening on MGRIT convergence when applied to two numerical models of an induction machine, one with linear material laws and a full nonlinear model. Parallel results demonstrate significant speedup in the simulation time compared to sequential time stepping, even for moderate numbers of processors.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems

References:

[1] Pyrhönen, J.; Jokinen, T.; Valéria, H., Design of Rotating Electrical Machines (2008), New York: Wiley, New York · doi:10.1002/9780470740095
[2] Jackson, JD, Classical Electrodynamics (1999), New York: Wiley, New York · Zbl 0920.00012
[3] Takahashi, Y.; Tokumasu, T.; Fujiwara, K.; Iwashita, T.; Nakashima, H., Parallel TP-EEC method based on phase conversion for time-periodic nonlinear magnetic field problems, IEEE Trans. Magn., 51, 3, 1 (2015) · doi:10.1109/TMAG.2014.2356193
[4] Takahashi, Y.; Fujiwara, K.; Iwashita, T.; Nakashima, H., Parallel finite-element method based on space-time domain decomposition for magnetic field analysis of electric machines, IEEE Trans. Magn., 55, 6, 1-4 (2019) · doi:10.1109/TMAG.2019.2895590
[5] Bermúdez, A., Gómez, D., Piñeiro, M., Salgado, P.: A novel numerical method for accelerating the computation of the steady-state in induction machines. Comput. Math. Appl. (2019). In Press · Zbl 1443.65194
[6] Lions, JL; Maday, Y.; Turinici, G., Résolution d’EDP par un schéma en temps “pararéel”, C. R. l’Académie des Sci. Série I. Math., 332, 7, 661-668 (2001) · Zbl 0984.65085
[7] Falgout, RD; Friedhoff, S.; Kolev, TV; MacLachlan, SP; Schroder, JB, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36, 6, C635-C661 (2014) · Zbl 1310.65115 · doi:10.1137/130944230
[8] Schöps, S.; Niyonzima, I.; Clemens, M., Parallel-in-time simulation of eddy current problems using parareal, IEEE Trans. Magn., 54, 3, 1-4 (2018) · doi:10.1109/TMAG.2017.2763090
[9] Gander, MJ; Kulchytska-Ruchka, I.; Niyonzima, I.; Schöps, S., A new parareal algorithm for problems with discontinuous sources, SIAM J. Sci. Comput., 41, 2, B375-B395 (2019) · Zbl 1439.65075 · doi:10.1137/18M1175653
[10] Bast, D.; Kulchytska-Ruchka, I.; Schöps, S.; Rain, O., Accelerated steady-state torque computation for induction machines using parallel-in-time algorithms, IEEE Trans. Magn., 56, 2, 1-9 (2019) · doi:10.1109/TMAG.2019.2945510
[11] Friedhoff, S.; Hahne, J.; Schöps, S., Multigrid-reduction-in-time for eddy current problems, PAMM, 19, 1, e201900262 (2019) · doi:10.1002/pamm.201900262
[12] Friedhoff, S.; Hahne, J.; Kulchytska-Ruchka, I.; Schöps, S.; Faragó, I.; Izsák, F.; Simon, PL, Exploring parallel-in-time approaches for eddy current problems, Progress in Industrial Mathematics at ECMI 2018, The European Consortium for Mathematics in Industry (2020), Berlin: Springer, Berlin
[13] Falgout, RD; Friedhoff, S.; Kolev, TV; MacLachlan, SP; Schroder, JB; Vandewalle, S., Multigrid methods with space-time concurrency, Comput. Vis. Sci., 18, 4, 123-143 (2017) · Zbl 1448.65146 · doi:10.1007/s00791-017-0283-9
[14] Hessenthaler, A.; Nordsletten, D.; Röhrle, O.; Schroder, JB; Falgout, RD, Convergence of the multigrid reduction in time algorithm for the linear elasticity equations, Numer. Linear Algebra Appl., 25, 3, e2155 (2018) · Zbl 1513.65345 · doi:10.1002/nla.2155
[15] Lecouvez, M., Falgout, R.D., Woodward, C.S., Top, P.: A parallel multigrid reduction in time method for power systems. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1-5 (2016)
[16] Schroder, J.B., Falgout, R.D., Woodward, C.S., Top, P., Lecouvez, M.: Parallel-in-time solution of power systems with scheduled events. In: 2018 IEEE Power Energy Society General Meeting (PESGM), pp. 1-5 (2018)
[17] Ruprecht, D., Convergence of parareal with spatial coarsening, PAMM, 14, 1, 1031-1034 (2014) · doi:10.1002/pamm.201410490
[18] Lunet, T.; Bodart, J.; Gratton, S.; Vasseur, X., Time-parallel simulation of the decay of homogeneous turbulence using parareal with spatial coarsening, Comput. Vis. Sci., 19, 1, 31-44 (2018) · Zbl 1396.76044 · doi:10.1007/s00791-018-0295-0
[19] Hackbusch, W., Parabolic multi-grid methods, Comput. Methods Appl. Sci. Eng., VI, 189-197 (1984) · Zbl 0565.65062
[20] Vandewalle, S.; Horton, G.; Hemker, P.; Wesseling, P., Multicomputer-Multigrid Solution of Parabolic Partial Differential Equations, Multigrid Methods IV, ISNM International Series of Numerical Mathematics, 97-109 (1994), Basel: Birkhäuser, Basel · Zbl 0814.65093
[21] Gander, MJ; Neumüller, M., Analysis of a new space-time parallel multigrid algorithm for parabolic problems, SIAM J. Sci. Comput., 38, 4, A2173-A2208 (2016) · Zbl 1342.65225 · doi:10.1137/15M1046605
[22] Franco, SAR; Gaspar, FJ; Pinto, MAV; Rodrigo, C., Multigrid method based on a space-time approach with standard coarsening for parabolic problems, Appl. Math. Comput., 317, Supplement C, 25-34 (2018) · Zbl 1427.65161
[23] Emmett, M.; Minion, ML, Toward an efficient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci., 7, 105-132 (2012) · Zbl 1248.65106 · doi:10.2140/camcos.2012.7.105
[24] Minion, ML; Speck, R.; Bolten, M.; Emmett, M.; Ruprecht, D., Interweaving PFASST and parallel multigrid, SIAM J. Sci. Comput., 37, S244-S263 (2015) · Zbl 1325.65193 · doi:10.1137/14097536X
[25] Speck, R., Ruprecht, D., Emmett, M., Bolten, M., Krause, R.: A space-time parallel solver for the three-dimensional heat equation. In: Parallel Computing: Accelerating Computational Science and Engineering (CSE), Advances in Parallel Computing, vol. 25, pp. 263-272. IOS Press (2014)
[26] Ruprecht, D., Speck, R., Emmett, M., Bolten, M., Krause, R.: Poster: Extreme-scale space-time parallelism. In: Proceedings of the 2013 Conference on High Performance Computing Networking, Storage and Analysis Companion, SC ’13 Companion (2013)
[27] Falgout, RD; Manteuffel, TA; O’Neill, B.; Schroder, JB, Multigrid reduction in time for nonlinear parabolic problems: a case study, SIAM J. Sci. Comput., 39, 5, S298-S322 (2017) · Zbl 1395.65066 · doi:10.1137/16M1082330
[28] Howse, A.; Sterck, H.; Falgout, R.; MacLachlan, S.; Schroder, J., Parallel-in-time multigrid with adaptive spatial coarsening for the linear advection and inviscid burgers equations, SIAM J. Sci. Comput., 41, A538-A565 (2019) · Zbl 1407.65040 · doi:10.1137/17M1144982
[29] Ries, M.; Trottenberg, U.; Winter, G., A note on MGR methods, Linear Algebra Appl., 49, 1-26 (1983) · Zbl 0515.65070 · doi:10.1016/0024-3795(83)90091-5
[30] Nielsen, AS; Brunner, G.; Hesthaven, JS, Communication-aware adaptive Parareal with application to a nonlinear hyperbolic system of partial differential equations, J. Comput. Phys., 371, 483-505 (2018) · Zbl 1415.65220 · doi:10.1016/j.jcp.2018.04.056
[31] Falgout, RD; Lecouvez, M.; Woodward, CS, A parallel-in-time algorithm for variable step multistep methods, J. Comput. Sci., 37, 101029 (2019) · doi:10.1016/j.jocs.2019.101029
[32] Stüben, K., An introduction to algebraic multigrid, Multigrid, 413-523 (2001), London: Academic press, London · Zbl 0979.65111
[33] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. Comput., 31, 138, 333-390 (1977) · Zbl 0373.65054 · doi:10.1090/S0025-5718-1977-0431719-X
[34] Falgout, R.D., Katz, A., Kolev, T.V., Schroder, J.B., Wissink, A., Yang, U.M.: Parallel time integration with multigrid reduction for a compressible fluid dynamics application. Technical report, llnl-jrnl-663416, Lawrence Livermore National Laboratory (2015)
[35] Kronsjö, L.; Dahlquist, G., On the design of nested iterations for elliptic difference equations, Nord. Tidskr. Informationsbehandling, 12, 63-71 (1972) · Zbl 0244.65073
[36] Kronsjö, L., A note on the “nested iterations” methods, Nord. Tidskr. Informationsbehandling, 15, 1, 107-110 (1975) · Zbl 0318.65045
[37] Schöps, S.; De Gersem, H.; Weiland, T., Winding functions in transient magnetoquasistatic field-circuit coupled simulations, COMPEL Int. J. Comput. Math. Electr. Electron. Eng., 32, 2063-2083 (2013) · Zbl 1358.78012 · doi:10.1108/COMPEL-01-2013-0004
[38] Ferreira da Luz, MV; Dular, P.; Sadowski, N.; Geuzaine, C.; Bastos, JPA, Analysis of a permanent magnet generator with dual formulations using periodicity conditions and moving band, IEEE Trans. Magn., 38, 2, 961-964 (2002) · doi:10.1109/20.996247
[39] Bartel, A.; Baumanns, S.; Schöps, S., Structural analysis of electrical circuits including magnetoquasistatic devices, Appl. Numer. Math., 61, 1257-1270 (2011) · Zbl 1237.78041 · doi:10.1016/j.apnum.2011.08.004
[40] Cortes Garcia, I.; De Gersem, H.; Schöps, S., A structural analysis of field/circuit coupled problems based on a generalised circuit element, Numer. Algorithms, 83, 1-22 (2019) · Zbl 1447.78014
[41] Black, H., Modulation Theory. Bell Telephone Laboratories Series (1953), New York: Van Nostrand, New York · Zbl 0089.20302
[42] Sun, J., Pulse-Width Modulation, 25-61 (2012), London: Springer, London
[43] Gyselinck, J.; Vandevelde, L.; Melkebeek, J., Multi-slice fe modeling of electrical machines with skewed slots-the skew discretization error, IEEE Trans. Magn., 37, 3233-3237 (2001) · doi:10.1109/20.952584
[44] Geuzaine, C.; Remacle, JF, Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181 · doi:10.1002/nme.2579
[45] Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. http://www.gmsh.info · Zbl 1176.74181
[46] Hahne, J., Friedhoff, S.: PyMGRIT: Multigrid-reduction-in-time in Python v1.0 (2020). https://github.com/pymgrit/pymgrit. Release 1.0 · Zbl 07467979
[47] Dular, P.; Geuzaine, C.; Henrotte, F.; Legros, W., A general environment for the treatment of discrete problems and its application to the finite element method, IEEE Trans. Magn., 34, 5, 3395-3398 (1998) · doi:10.1109/20.717799
[48] Geuzaine, C., GetDP: a general finite-element solver for the de Rham complex, PAMM, 7, 1, 1010603-1010604 (2007) · doi:10.1002/pamm.200700750
[49] Getdp: A general environment for the treatment of discrete problems. http://www.getdp.info
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.