×

NIC-CAGE: an open-source software package for predicting optimal control fields in photo-excited chemical systems. (English) Zbl 07689009

Summary: We present an open-source software package, NIC-CAGE (Novel Implementation of Constrained Calculations for Automated Generation of Excitations), for predicting quantum optimal control fields in photo-excited chemical systems. Our approach utilizes newly derived analytic gradients for maximizing the transition probability (based on a norm-conserving Crank-Nicolson propagation scheme) for driving a system from a known initial quantum state to another desired state. The NIC-CAGE code is written in the MATLAB and Python programming environments to aid in its readability and general accessibility to both users and practitioners. Throughout this work, we provide several examples and outputs on a variety of different potentials, propagation times, and user-defined parameters to demonstrate the robustness of the NIC-CAGE software package. As such, the use of this predictive tool by both experimentalists and theorists could lead to further advances in both understanding and controlling the dynamics of photo-excited systems.

MSC:

82-04 Software, source code, etc. for problems pertaining to statistical mechanics
Full Text: DOI

References:

[1] London, A. E.; Chen, H.; Sabuj, M. A.; Tropp, J.; Saghayezhian, M.; Eedugurala, N.; Zhang, B. A.; Liu, Y.; Gu, X.; Wong, B. M.; Rai, N.; Bowman, M. K.; Azoulay, J. D., Sci. Adv., 5, 5, Article eaav2336 pp. (2019)
[2] Sulas, D. B.; London, A. E.; Huang, L.; Xu, L.; Wu, Z.; Ng, T. N.; Wong, B. M.; Schlenker, C. W.; Azoulay, J. D.; Sfeir, M. Y., Adv. Opt. Mater., 6, 7, Article 1701138 pp. (2018)
[3] Azoulay, J. D.; Koretz, Z. A.; Wong, B. M.; Bazan, G. C., Macromolecules, 46, 4, 1337-1342 (2013)
[4] Ilawe, N. V.; Oviedo, M. B.; Wong, B. M., J. Chem. Theory Comput., 13, 8, 3442-3454 (2017)
[5] Ilawe, N. V.; Oviedo, M. B.; Wong, B. M., J. Mater. Chem. C, 6, 5857-5864 (2018)
[6] Gunnarsson, L.; Rindzevicius, T.; Prikulis, J.; Kasemo, B.; Käll, M.; Zou, S.; Schatz, G. C., J. Phys. Chem. B, 109, 3, 1079-1087 (2005)
[7] Naldoni, A.; Shalaev, V. M.; Brongersma, M. L., Science, 356, 6341, 908-909 (2017)
[8] Jang, J. S.; Kim, H. G.; Lee, J. S., Catal. Today, 185, 1, 270-277 (2012)
[9] Li, K.; An, X.; Park, K. H.; Khraisheh, M.; Tang, J., Catal. Today, 224, 3-12 (2014)
[10] Chen, X.; Shen, S.; Guo, L.; Mao, S. S., Chem. Rev., 110, 11, 6503-6570 (2010)
[11] Zhu, W.; Botina, J.; Rabitz, H., J. Chem. Phys., 108, 5, 1953-1963 (1998)
[12] Peirce, A. P.; Dahleh, M. A.; Rabitz, H., Phys. Rev. A, 37, 4950-4964 (1988)
[13] Brumer, P.; Shapiro, M., Acc. Chem. Res., 22, 12, 407-413 (1989)
[14] Johansson, J.; Nation, P.; Nori, F., Comput. Phys. Comm., 184, 4, 1234-1240 (2013)
[15] Khaneja, N.; Reiss, T.; Kehlet, C.; Schulte-Herbrggen, T.; Glaser, S. J., J. Magn. Reson., 172, 2, 296-305 (2005)
[16] Gharibnejad, H.; Schneider, B.; Leadingham, M.; Schmale, H., Comput. Phys. Commun., 252, Article 106808 pp. (2020) · Zbl 07685711
[17] Shi, S.; Rabitz, H., J. Chem. Phys., 92, 1, 364-376 (1990)
[18] Wilson, E. B.; Decius, J. C.; Cross, P. C., (Molecular Vibrations: the Theory of Infrared and Raman Vibrational Spectra. Molecular Vibrations: the Theory of Infrared and Raman Vibrational Spectra, Dover Books on Chemistry (1955), Dover Publications: Dover Publications New York, NY)
[19] Wong, B. M.; Thom, R. L.; Field, R. W., J. Phys. Chem. A, 110, 23, 7406-7413 (2006)
[20] Oviedo, M. B.; Wong, B. M., J. Chem. Theory Comput., 12, 4, 1862-1871 (2016)
[21] Wong, B. M.; Steeves, A. H.; Field, R. W., J. Phys. Chem. B, 110, 38, 18912-18920 (2006)
[22] Fukui, K., J. Phys. Chem., 74, 23, 4161-4163 (1970)
[23] Fukui, K., Acc. Chem. Res., 14, 12, 363-368 (1981)
[24] Tew, D. P.; Handy, N. C.; Carter, S., J. Chem. Phys., 125, 8, Article 084313 pp. (2006)
[25] Miller, W. H.; Handy, N. C.; Adams, J. E., J. Chem. Phys., 72, 1, 99-112 (1980)
[26] Tew, D. P.; Handy, N. C.; Carter, S.; Irle, S.; Bowman, J., Mol. Phys., 101, 23-24, 3513-3525 (2003)
[27] Debnath, A.; Falvo, C.; Meier, C., J. Phys. Chem. A, 117, 48, 12884-12888 (2013)
[28] Keefer, D.; Thallmair, S.; Zauleck, J. P.P.; de Vivie-Riedle, R., J. Phys. B: At. Mol. Opt. Phys., 48, 23, Article 234003 pp. (2015)
[29] Keefer, D.; de Vivie-Riedle, R., Acc. Chem. Res., 51, 9, 2279-2286 (2018)
[30] Wong, B. M.; Raman, S., J. Comput. Chem., 28, 4, 759-766 (2007)
[31] Wong, B. M.; Fadri, M. M.; Raman, S., J. Comput. Chem., 29, 3, 481-487 (2008)
[32] Bechtel, H.; Steeves, A.; Wong, B.; Field, R., Angew. Chem. Int. Ed., 47, 16, 2969-2972 (2008)
[33] Wong, B. M., Phys. Chem. Chem. Phys., 10, 5599-5606 (2008)
[34] Prozument, K.; Shaver, R. G.; Ciuba, M. A.; Muenter, J. S.; Park, G. B.; Stanton, J. F.; Guo, H.; Wong, B. M.; Perry, D. S.; Field, R. W., Faraday Discuss., 163, 33-57 (2013)
[35] Reinisch, G.; Miki, K.; Vignoles, G. L.; Wong, B. M.; Simmons, C. S., J. Chem. Theory Comput., 8, 8, 2713-2724 (2012)
[36] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Gaussian16 Revision C.01 (2016), Gaussian Inc.: Gaussian Inc. Wallingford CT
[37] Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X.; Ghosh, D.; Goldey, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin, R. Z.; Kuå, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard, R. M.; Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; Iii, H. L.W.; Zimmerman, P. M.; Zuev, D.; Albrecht, B.; Alguire, E.; Austin, B.; Beran, G. J.O.; Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya, K. B.; Brown, S. T.; Casanova, D.; Chang, C.-M.; Chen, Y.; Chien, S. H.; Closser, K. D.; Crittenden, D. L.; Diedenhofen, M.; Jr., R. A.D.; Do, H.; Dutoi, A. D.; Edgar, R. G.; Fatehi, S.; Fusti-Molnar, L.; Ghysels, A.; Golubeva-Zadorozhnaya, A.; Gomes, J.; Hanson-Heine, M. W.; Harbach, P. H.; Hauser, A. W.; Hohenstein, E. G.; Holden, Z. C.; Jagau, T.-C.; Ji, H.; Kaduk, B.; Khistyaev, K.; Kim, J.; Kim, J.; King, R. A.; Klunzinger, P.; Kosenkov, D.; Kowalczyk, T.; Krauter, C. M.; Lao, K. U.; Laurent, A. D.; Lawler, K. V.; Levchenko, S. V.; Lin, C. Y.; Liu, F.; Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.; Manzer, S. F.; Mao, S.-P.; Mardirossian, N.; Marenich, A. V.; Maurer, S. A.; Mayhall, N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya, R.; O’Neill, D. P.; Parkhill, J. A.; Perrine, T. M.; Peverati, R.; Prociuk, A.; Rehn, D. R.; Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.; Small, D. W.; Sodt, A.; Stein, T.; Stück, D.; Su, Y.-C.; Thom, A. J.; Tsuchimochi, T.; Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.; Watson, M. A.; Wenzel, J.; White, A.; Williams, C. F.; Yang, J.; Yeganeh, S.; Yost, S. R.; You, Z.-Q.; Zhang, I. Y.; Zhang, X.; Zhao, Y.; Brooks, B. R.; Chan, G. K.; Chipman, D. M.; Cramer, C. J.; Iii, W. A.G.; Gordon, M. S.; Hehre, W. J.; Klamt, A.; Iii, H. F.S.; Schmidt, M. W.; Sherrill, C. D.; Truhlar, D. G.; Warshel, A.; Xu, X.; Aspuru-Guzik, A.; Baer, R.; Bell, A. T.; Besley, N. A.; Chai, J.-D.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Gwaltney, S. R.; Hsu, C.-P.; Jung, Y.; Kong, J.; Lambrecht, D. S.; Liang, W.; Ochsenfeld, C.; Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.; Voorhis, T. V.; Herbert, J. M.; Krylov, A. I.; Gill, P. M.; Head-Gordon, M., Mol. Phys., 113, 2, 184-215 (2015)
[38] Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., J. Comput. Chem., 14, 11, 1347-1363 (1993)
[39] Valiev, M.; Bylaska, E.; Govind, N.; Kowalski, K.; Straatsma, T.; Dam, H. V.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T.; de Jong, W., Comput. Phys. Comm., 181, 9, 1477-1489 (2010) · Zbl 1216.81179
[40] Joachain, C. J.; Kylstra, N. J.; Potvliege, R. M., (Atoms in Intense Laser Fields (2011), Cambridge University Press), 218-266
[41] QuTiP: Quantum toolbox in python, URL http://qutip.org/docs/latest/modules/qutip/qobj.html#Qobj.expm.
[42] Wirtinger, W., Math. Ann., 97, 357-376 (1927), URL http://eudml.org/doc/182642
[43] von Winckel, G.; Borzì, A., Inverse Problems, 24, 3, Article 034007 pp. (2008) · Zbl 1145.81412
[44] Sprengel, M.; Ciaramella, G.; Borz, A., Comput. Phys. Comm., 214, 231-238 (2017) · Zbl 1376.93047
[45] Paramonov, G., Chem. Phys., 177, 1, 169-180 (1993)
[46] Shi, S.; Rabitz, H., Comput. Phys. Comm., 63, 1, 71-83 (1991) · Zbl 0850.65322
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.