×

A mixture autoregressive model based on Student’s \(t\)-distribution. (English) Zbl 07649581

Summary: A new mixture autoregressive model based on Student’s \(t\)-distribution is proposed. A key feature of our model is that the conditional \(t\)-distributions of the component models are based on autoregressions that have multivariate \(t\)-distributions as their (low-dimensional) stationary distributions. That autoregressions with such stationary distributions exist is not immediate. Our formulation implies that the conditional mean of each component model is a linear function of past observations and the conditional variance is also time-varying. Compared to previous mixture autoregressive models our model may therefore be useful in applications where the data exhibits rather strong conditional heteroskedasticity. Our formulation also has the theoretical advantage that conditions for stationarity and ergodicity are always met and these properties are much more straightforward to establish than is common in nonlinear autoregressive models. An empirical example employing a realized kernel series constructed from S&P 500 high-frequency intraday data shows that the proposed model performs well in volatility forecasting. Our methodology is implemented in the freely available StMAR Toolbox for MATLAB.

MSC:

62-XX Statistics

Software:

StMAR; Matlab

References:

[1] Barndorff-Nielsen, O. E.; Hansen, P. R.; Lunde, A.; Shephard, N., Designing realized kernels to measure the ex post variation of equity prices in the presence of noise, Econometrica, 76, 1481-536 (2008) · Zbl 1153.91416
[2] Corsi, F., A simple approximate long-memory model of realized volatility, Journal of Financial Econometrics, 7, 2, 174-96 (2009) · doi:10.1093/jjfinec/nbp001
[3] Ding, P., On the conditional distribution of the multivariate t distribution, The American Statistician, 70, 3, 293-95 (2016) · Zbl 07665887 · doi:10.1080/00031305.2016.1164756
[4] Dueker, M. J.; Sola, M.; Spagnolo, F., Contemporaneous threshold autoregressive models: Estimation, testing and forecasting, Journal of Econometrics, 141, 2, 517-47 (2007) · Zbl 1418.62315 · doi:10.1016/j.jeconom.2006.10.022
[5] Frühwirth-Schnatter, S., Finite mixture and Markov switching models (2006), Springer · Zbl 1108.62002
[6] Glasbey, C. A., Non-linear autoregressive time series with multivariate Gaussian mixtures as marginal distributions, Journal of the Royal Statistical Society: Series C (Applied Statistics), 50, 2, 143-54 (2001) · doi:10.1111/1467-9876.00225
[7] Heber, G.; Lunde, A.; Shephard, N.; Sheppard, K., Oxford-man institute’s realized library v0.2. (2009), Oxford-Man Institute, University of Oxford
[8] Heracleous, M. S.; Spanos, A.; Terrell, D.; Fomby, T. B., Econometric analysis of financial and economic time series (advaces in econometrics, 20, The Student’s t dynamic linear regression: Re-examining volatility modeling, 289-319 (2006), Emerald Group Publishing Limited · Zbl 1191.91011
[9] Holzmann, H.; Munk, A.; Gneiting, T., Identifiability of finite mixtures of elliptical distributions, Scandinavian Journal of Statistics, 33, 4, 753-63 (2006) · Zbl 1164.62354 · doi:10.1111/j.1467-9469.2006.00505.x
[10] Kalliovirta, L.; Meitz, M.; Saikkonen, P., A Gaussian mixture autoregressive model for univariate time series, Journal of Time Series Analysis, 36, 2, 247-66 (2015) · Zbl 1320.62201 · doi:10.1111/jtsa.12108
[11] Kalliovirta, L.; Meitz, M.; Saikkonen, P., Gaussian mixture vector autoregression, Journal of Econometrics, 192, 2, 485-98 (2016) · Zbl 1420.62389 · doi:10.1016/j.jeconom.2016.02.012
[12] Kotz, S.; Nadarajah, S., Multivariate t distributions and their applications (2004), Cambridge University Press · Zbl 1100.62059
[13] Lanne, M.; Saikkonen, P., Modeling the US short-term interest rate by mixture autoregressive processes, Journal of Financial Econometrics, 1, 1, 96-125 (2003) · doi:10.1093/jjfinec/nbg004
[14] Le, N. D.; Martin, R. D.; Raftery, A. E., Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models, Journal of the American Statistical Association, 91, 1504-15 (1996) · Zbl 0881.62096
[15] Li, G.; Guan, B.; Li, W. K.; Yu, P. L., Hysteretic autoregressive time series models, Biometrika, 102, 3, 717-23 (2015) · Zbl 1452.62658 · doi:10.1093/biomet/asv017
[16] McLachlan, G.; Peel, D., Finite mixture models (2000), Wiley · Zbl 0963.62061
[17] Meitz, M.; Saikkonen, P., Testing for observation-dependent regime switching in mixture autoregressive models, Journal of Econometrics, 222, 1, 601-24 (2021) · Zbl 1471.62472 · doi:10.1016/j.jeconom.2020.04.048
[18] Meyn, S.; Tweedie, R. L., Markov chains and stochastic stability. (2009), Cambridge University Press · Zbl 1165.60001
[19] Pitt, M. K.; Walker, S. G., Extended constructions of stationary autoregressive processes, Statistics & Probability Letters, 76, 12, 1219-24 (2006) · Zbl 1090.62097 · doi:10.1016/j.spl.2005.12.020
[20] Ranga Rao, R., Relations between weak and uniform convergence of measures with applications, The Annals of Mathematical Statistics, 33, 2, 659-80 (1962) · Zbl 0117.28602 · doi:10.1214/aoms/1177704588
[21] Spanos, A., On modeling heteroskedasticity: The Student’s t and elliptical linear regression models, Econometric Theory, 10, 2, 286-315 (1994) · doi:10.1017/S0266466600008422
[22] Tong, H., Threshold models in time series analysis - 30 years on, Statistics and Its Interface, 4, 2, 107-18 (2011) · Zbl 1490.62278 · doi:10.4310/SII.2011.v4.n2.a1
[23] Wong, C. S.; Chan, W. S.; Kam, P. L., A Student t-mixture autoregressive model with applications to heavy-tailed financial data, Biometrika, 96, 3, 751-60 (2009) · Zbl 1170.62065 · doi:10.1093/biomet/asp031
[24] Wong, C. S.; Li, W. K., On a mixture autoregressive model, Journal of Royal Statistical Society B, 62, 95-115 (2000) · Zbl 0941.62095
[25] Wong, C. S.; Li, W. K., On a logistic mixture autoregressive model, Biometrika, 88, 3, 833-46 (2001) · Zbl 0985.62074 · doi:10.1093/biomet/88.3.833
[26] Wong, C. S.; Li, W. K., On a mixture autoregressive conditional heteroscedastic model, Journal of the American Statistical Association, 96, 455, 982-95 (2001) · Zbl 1051.62091 · doi:10.1198/016214501753208645
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.