×

Sensitivity analysis of chaotic systems using a frequency-domain shadowing approach. (English) Zbl 07640530

Summary: We present a frequency-domain method for computing the sensitivities of time-averaged quantities of chaotic systems with respect to input parameters. Such sensitivities cannot be computed by conventional adjoint analysis tools, because the presence of positive Lyapunov exponents leads to exponential growth of the adjoint variables. The proposed method is based on the well established least-square shadowing (LSS) approach [Q. Wang et al., J. Comput. Phys. 267, 210–224 (2014; Zbl 1349.37082)], that formulates the evaluation of sensitivities as an optimisation problem, thereby avoiding the exponential growth of the solution. All existing formulations of LSS (and its variants) are in the time domain. In the present paper, we reformulate the LSS method in the frequency (Fourier) space using harmonic balancing. The resulting system is closed using periodicity. The new method is tested on the Kuramoto-Sivashinsky system and the results match with those obtained using the standard time-domain formulation. The storage and computing requirements of the direct solution grow rapidly with the size of the system. To mitigate these requirements, we propose a resolvent-based iterative approach that needs much less storage. Application to the Kuramoto-Sivashinsky system gave accurate results with low computational cost. Truncating the large frequencies with small energy content from the harmonic balancing operator did not affect the accuracy of the computed sensitivities. Further work is needed to assess the performance and scalability of the proposed method.

MSC:

76Fxx Turbulence
37Dxx Dynamical systems with hyperbolic behavior
37Cxx Smooth dynamical systems: general theory

Citations:

Zbl 1349.37082

Software:

MUMPS

References:

[1] Wang, Q.; Hu, R.; Blonigan, P., Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations, J. Comput. Phys., 267, 210-224 (2014) · Zbl 1349.37082
[2] Lea, D. J.; Allen, M. R.; Haine, T. W., Sensitivity analysis of the climate of a chaotic system, Tellus, Ser. A Dyn. Meteorol. Oceanogr., 52, 5, 523-532 (2000)
[3] Bewley, T.; Moin, P.; Temam, R., DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms, J. Fluid Mech., 447, 179-225 (2001) · Zbl 1036.76027
[4] Xiao, D.; Papadakis, G., Nonlinear optimal control of transition due to a pair of vortical perturbations using a receding horizon approach, J. Fluid Mech., 861, 524-555 (2019) · Zbl 1415.76223
[5] Larsson, J., Grid-adaptation for chaotic multi-scale simulations as a verification-driven inverse problem, (AIAA Aerospace Sciences Meeting (2018)), 1-17
[6] Eyink, G. L.; Haine, T. W.N.; Lea, D. J., Ruelle’s linear response formula, ensemble adjoint schemes and Lévy flights, Nonlinearity, 17, 5, 1867-1889 (2004) · Zbl 1115.37069
[7] Kubo, R., The fluctuation-dissipation theorem, Rep. Prog. Phys., 29, 1, 255 (1966) · Zbl 0163.23102
[8] Thuburn, J., Climate sensitivities via a Fokker-Planck adjoint approach, Q. J. R. Meteorol. Soc., 131, 605, 73-92 (2005)
[9] Craske, J., Adjoint sensitivity analysis of chaotic systems using cumulant truncation, Chaos Solitons Fractals, 119, 243-254 (2019) · Zbl 1448.34088
[10] Lasagna, D., Sensitivity analysis of chaotic systems using unstable periodic orbits, SIAM J. Appl. Dyn. Syst., 17, 1, 547-580 (2018) · Zbl 1391.37021
[11] Chandramoorthy, N.; Wang, Q., Efficient computation of linear response of chaotic attractors with one-dimensional unstable manifolds, SIAM J. Appl. Dyn. Syst., 21, 2, 735-781 (2022) · Zbl 1497.37103
[12] Ruelle, D., Differentiation of SRB states, Commun. Math. Phys., 187, 1, 227-241 (1997) · Zbl 0895.58045
[13] Wang, Q., Convergence of the least squares shadowing method for computing derivative of ergodic averages, SIAM J. Numer. Anal., 52, 1, 156-170 (2014) · Zbl 1291.37106
[14] Blonigan, P. J.; Wang, Q.; Nielsen, E. J.; Diskin, B., Least-squares shadowing sensitivity analysis of chaotic flow around a two-dimensional airfoil, AIAA J., 56, 2, 658-672 (2018)
[15] Pilyugin, S. Y., Shadowing in Dynamical Systems, Lecture Notes in Mathematics (1999), Springer-Verlag · Zbl 0954.37014
[16] Bowen, R., ω-Limit sets for Axiom A diffeomorphisms, J. Differ. Equ., 18, 2, 333-339 (1975) · Zbl 0315.58019
[17] Hammel, S. M.; Yorke, J. A.; Grebogi, C., Do numerical orbits of chaotic dynamical processes represent true orbits?, J. Complex., 3, 2, 136-145 (1987) · Zbl 0639.65037
[18] Sauer, T.; Yorke, J. A., Rigorous verification of trajectories for the computer simulation of dynamical systems, Nonlinearity, 4, 3, 961-979 (1991) · Zbl 0736.58032
[19] Sauer, T.; Grebogi, C.; Yorke, J. A., How long do numerical chaotic solutions remain valid?, Phys. Rev. Lett., 79, 59-62 (1997)
[20] Chandramoorthy, N.; Wang, Q., On the probability of finding nonphysical solutions through shadowing, J. Comput. Phys., 440, Article 110389 pp. (2021) · Zbl 07512365
[21] Ni, A.; Wang, Q., Sensitivity analysis on chaotic dynamical systems by Non-Intrusive Least Squares Shadowing (NILSS), J. Comput. Phys., 347, 56-77 (2017) · Zbl 1380.65425
[22] Ni, A.; Talnikar, C., Adjoint sensitivity analysis on chaotic dynamical systems by Non-Intrusive Least Squares Adjoint Shadowing (NILSAS), J. Comput. Phys., 395, 690-709 (2019) · Zbl 1452.65399
[23] Ni, A., Hyperbolicity, shadowing directions and sensitivity analysis of a turbulent three-dimensional flow, J. Fluid Mech., 863, 644-669 (2019) · Zbl 1415.76298
[24] Blonigan, P. J.; Wang, Q., Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems, J. Comput. Phys., 354, 447-475 (2018) · Zbl 1380.37052
[25] Shawki, K.; Papadakis, G., A preconditioned multiple shooting shadowing algorithm for the sensitivity analysis of chaotic systems, J. Comput. Phys., 398, Article 108861 pp. (2019) · Zbl 1453.49013
[26] Kantarakias, K.; Shawki, K.; Papadakis, G., Uncertainty quantification of sensitivities of time-average quantities in chaotic systems, Phys. Rev. E, 101, Article 022223 pp. (2020)
[27] Keefe, L.; Moin, P.; Kim, J., The dimension of attractors underlying periodic turbulent Poiseuille flow, J. Fluid Mech., 242, 1-29 (1992) · Zbl 0757.76018
[28] Vastano, J. A.; Moser, R. D., Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow, J. Fluid Mech., 233, 83-118 (1991) · Zbl 0738.76033
[29] Hassanaly, M.; Raman, V., Lyapunov spectrum of forced homogeneous isotropic turbulent flows, Phys. Rev. Fluids, 4, Article 114608 pp. (2019)
[30] Crisanti, A.; Jensen, M. H.; Vulpiani, A.; Paladin, G., Intermittency and predictability in turbulence, Phys. Rev. Lett., 70, 166-169 (1993) · Zbl 0824.76037
[31] Mohan, P.; Fitzsimmons, N.; Moser, R. D., Scaling of Lyapunov exponents in homogeneous isotropic turbulence, Phys. Rev. Fluids, 2, Article 114606 pp. (2017)
[32] Xu, M.; Paul, M. R., Covariant Lyapunov vectors of chaotic Rayleigh-Bénard convection, Phys. Rev. E, 93, Article 062208 pp. (2016)
[33] Pope, S. B., Turbulent Flows (2000), Cambridge University Press · Zbl 0966.76002
[34] Pruett, C., Temporal large-eddy simulation: theory and implementation, Theor. Comput. Fluid Dyn., 22, 275-304 (2008) · Zbl 1161.76500
[35] Sliwiak, A. A.; Wang, Q., Approximating linear response of physical chaos (2022)
[36] McKeon, B. J.; Sharma, A. S., A critical-layer framework for turbulent pipe flow, J. Fluid Mech., 658, 336-382 (2010) · Zbl 1205.76138
[37] Rigas, G.; Sipp, D.; Colonius, T., Nonlinear input/output analysis: application to boundary layer transition, J. Fluid Mech., 911, A15 (2021) · Zbl 1461.76223
[38] Padovan, A.; Otto, S. E.; Rowley, C. W., Analysis of amplification mechanisms and cross-frequency interactions in nonlinear flows via the harmonic resolvent, J. Fluid Mech., 900, A14 (2020) · Zbl 1460.76176
[39] Moarref, R.; Jovanovic, M. R., Model-based design of transverse wall oscillations for turbulent drag reduction, J. Fluid Mech., 707, 205-240 (2012) · Zbl 1275.76152
[40] Wang, Q., Forward and adjoint sensitivity computation of chaotic dynamical systems, J. Comput. Phys., 235, 1-13 (2013) · Zbl 1291.37107
[41] Pilyugin, S. Y., Shadowing in Dynamical Systems, Lecture Notes in Mathematics, vol. 1706 (1999), Springer Berlin Heidelberg · Zbl 0954.37014
[42] Lazarus, A.; Thomas, O., A harmonic-based method for computing the stability of periodic solutions of dynamical systems, C. R., Méc., 338, 9, 510-517 (2010) · Zbl 1223.37106
[43] Wereley, N. M., Analysis and control of linear periodically time varying systems (1991), Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, Ph.D. thesis
[44] Lasagna, D.; Sharma, A.; Meyers, J., Periodic shadowing sensitivity analysis of chaotic systems, J. Comput. Phys., 391, 119-141 (2019) · Zbl 1452.65129
[45] Hyman, J. M.; Nicolaenko, B., The Kuramoto-Sivashinsky equation: a bridge between PDE’s and dynamical systems, Phys. D, Nonlinear Phenom., 18, 1, 113-126 (1986) · Zbl 0602.58033
[46] Blonigan, P. J.; Wang, Q., Least squares shadowing sensitivity analysis of a modified Kuramoto-Sivashinsky equation, Chaos Solitons Fractals, 64, 16-25 (2014) · Zbl 1348.35025
[47] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y.; Koster, J., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 1, 15-41 (2001) · Zbl 0992.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.