×

Weighted additive spanners. (English) Zbl 07636222

Adler, Isolde (ed.) et al., Graph-theoretic concepts in computer science. 46th international workshop, WG 2020, Leeds, UK, June 24–26, 2020. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 12301, 401-413 (2020).
Summary: A spanner of a graph \(G\) is a subgraph \(H\) that approximately preserves shortest path distances in \(G\). Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions can seamlessly handle edge weights, so long as error is measured multiplicatively. In this work, we investigate whether one can similarly extend constructions of spanners with purely additive error to weighted graphs. These extensions are not immediate, due to a key lemma about the size of shortest path neighborhoods that fails for weighted graphs. Despite this, we recover a suitable amortized version, which lets us prove direct extensions of classic \(+2\) and \(+4\) unweighted spanners (both all-pairs and pairwise) to \(+2W\) and \(+4W\) weighted spanners, where \(W\) is the maximum edge weight. Specifically, we show that a weighted graph \(G\) contains all-pairs (pairwise) \(+2W\) and \(+4W\) weighted spanners of size \(O(n^{3/2})\) and \(O(n^{7/5}) (O(np^{1/3})\) and \(O(np^{2/7}))\) respectively. For a technical reason, the \(+6\) unweighted spanner becomes a \(+8W\) weighted spanner; closing this error gap is an interesting remaining open problem. That is, we show that \(G\) contains all-pairs (pairwise) \(+8W\) weighted spanners of size \(O(n^{4/3}) (O(np^{1/4}))\).
For the entire collection see [Zbl 1502.68016].

MSC:

68R10 Graph theory (including graph drawing) in computer science

References:

[1] Abboud, A.; Bodwin, G., The 4/3 additive spanner exponent is tight, J. ACM (JACM), 64, 4, 1-20, 2017 · Zbl 1410.68263 · doi:10.1145/3088511
[2] Abboud, A., Bodwin, G., Pettie, S.: A hierarchy of lower bounds for sublinear additive spanners. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 568-576. Society for Industrial and Applied Mathematics (2017) · Zbl 1410.68265
[3] Aingworth, D.; Chekuri, C.; Indyk, P.; Motwani, R., Fast estimation of diameter and shortest paths (without matrix multiplication), SIAM J. Comput., 28, 1167-1181, 1999 · Zbl 0926.68093 · doi:10.1137/S0097539796303421
[4] Althöfer, I.; Das, G.; Dobkin, D.; Joseph, D.; Gilbert, JR; Karlsson, R., Generating sparse spanners for weighted graphs, SWAT 90, 26-37, 1990, Heidelberg: Springer, Heidelberg · Zbl 1502.68198 · doi:10.1007/3-540-52846-6_75
[5] Baswana, S.; Kavitha, T.; Mehlhorn, K.; Pettie, S., Additive spanners and \(( \alpha , \beta )\)-spanners, ACM Trans. Algorithms (TALG), 7, 1, 5, 2010 · Zbl 1295.05094
[6] Bodwin, G.: Linear size distance preservers. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 600-615. Society for Industrial and Applied Mathematics (2017) · Zbl 1410.05033
[7] Bodwin, G.: A note on distance-preserving graph sparsification. arXiv preprint arXiv:2001.07741, 2020
[8] Bodwin, G., Williams, V.V.: Better distance preservers and additive spanners. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 855-872. Society for Industrial and Applied Mathematics (2016) · Zbl 1410.05034
[9] Cai, L.; Keil, JM, Computing visibility information in an inaccurate simple polygon, Int. J. Comput. Geometr. Appl., 7, 6, 515-538, 1997 · Zbl 0887.68108 · doi:10.1142/S0218195997000326
[10] Chang, H.-C., Gawrychowski, P., Mozes, S., Weimann, O.: Near-optimal distance emulator for planar graphs. In: Proceedings of 26th Annual European Symposium on Algorithms (ESA 2018), vol. 112, pp. 16:1-16:17 (2018) · Zbl 1522.68390
[11] Chechik, S.: New additive spanners. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 498-512. Society for Industrial and Applied Mathematics (2013) · Zbl 1412.68165
[12] Coppersmith, D.; Elkin, M., Sparse sourcewise and pairwise distance preservers, SIAM J. Discrete Math., 20, 2, 463-501, 2006 · Zbl 1118.05025 · doi:10.1137/050630696
[13] Cygan, M., Grandoni, F., Kavitha, T.: On pairwise spanners. In: Proceedings of 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), vol. 20, pp. 209-220 (2013) · Zbl 1354.05131
[14] Dobson, A.; Bekris, KE, Sparse roadmap spanners for asymptotically near-optimal motion planning, Int. J. Robot. Res., 33, 1, 18-47, 2014 · doi:10.1177/0278364913498292
[15] Elkin, M., Computing almost shortest paths, ACM Trans. Algorithms (TALG), 1, 2, 283-323, 2005 · Zbl 1321.05258 · doi:10.1145/1103963.1103968
[16] Elkin, M., Gitlitz, Y., Neiman, O.: Almost shortest paths and PRAM distance oracles in weighted graphs. arXiv preprint arXiv:1907.11422 (2019)
[17] Elkin, M.; Peleg, D., \((1 + \epsilon ,\beta )\)-spanner constructions for general graphs, SIAM J. Comput., 33, 3, 608-631, 2004 · Zbl 1056.05134 · doi:10.1137/S0097539701393384
[18] Huang, S.-E., Pettie, S.: Lower bounds on sparse spanners, emulators, and diameter-reducing shortcuts. In: Proceedings of 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 26:1-26:12 (2018) · Zbl 1477.68230
[19] Kavitha, T., New pairwise spanners, Theory Comput. Syst., 61, 4, 1011-1036, 2017 · Zbl 1386.05185 · doi:10.1007/s00224-016-9736-7
[20] Kavitha, T.; Varma, NM, Small stretch pairwise spanners and approximate \(d\)-preservers, SIAM J. Discrete Math., 29, 4, 2239-2254, 2015 · Zbl 1327.05090 · doi:10.1137/140953927
[21] Knudsen, MBT; Ravi, R.; Gørtz, IL, Additive spanners: a simple construction, Algorithm Theory - SWAT 2014, 277-281, 2014, Cham: Springer, Cham · Zbl 1417.05219 · doi:10.1007/978-3-319-08404-6_24
[22] Liestman, A.; Shermer, T., Additive graph spanners, Networks, 23, 343-363, 1993 · Zbl 0783.68094 · doi:10.1002/net.3230230417
[23] Marble, JD; Bekris, KE, Asymptotically near-optimal planning with probabilistic roadmap spanners, IEEE Trans. Robot., 29, 2, 432-444, 2013 · doi:10.1109/TRO.2012.2234312
[24] Narasimhan, G.; Smid, M., Geometric Spanner Networks, 2007, New York: Cambridge University Press, New York · Zbl 1140.68068 · doi:10.1017/CBO9780511546884
[25] Peleg, D.; Schäffer, AA, Graph spanners, J. Graph Theory, 13, 1, 99-116, 1989 · Zbl 0673.05059 · doi:10.1002/jgt.3190130114
[26] Peleg, D.; Upfal, E., A trade-off between space and efficiency for routing tables, J. ACM (JACM), 36, 3, 510-530, 1989 · Zbl 0900.68262 · doi:10.1145/65950.65953
[27] Pettie, S., Low distortion spanners, ACM Trans. Algorithms (TALG), 6, 1, 7, 2009 · Zbl 1298.05307
[28] Salzman, O.; Shaharabani, D.; Agarwal, PK; Halperin, D., Sparsification of motion-planning roadmaps by edge contraction, Int. J. Robot. Res., 33, 14, 1711-1725, 2014 · doi:10.1177/0278364914556517
[29] Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 802-809. Society for Industrial and Applied Mathematics (2006) · Zbl 1192.05041
[30] Woodruff, DP; Abramsky, S.; Gavoille, C.; Kirchner, C.; Meyer auf der Heide, F.; Spirakis, PG, Additive spanners in nearly quadratic time, Automata, Languages and Programming, 463-474, 2010, Heidelberg: Springer, Heidelberg · Zbl 1288.68190 · doi:10.1007/978-3-642-14165-2_40
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.