×

Efficient depth selection for the implementation of noisy quantum approximate optimization algorithm. (English) Zbl 07635151

Summary: Noise on near-term quantum devices will inevitably limit the performance of Quantum Approximate Optimization Algorithm (QAOA). One significant consequence is that the performance of QAOA may fail to monotonically improve with control depth. In principle, optimal depth can be found at a certain point where the noise effects just outweigh the benefits brought by increasing the depth. In this work, we propose to use the regularized model selection algorithm to identify the optimal depth with just a few iterations of regularization parameters. Numerical experiments show that the algorithm can efficiently locate the optimal depth under relaxation and dephasing noises.

MSC:

68-XX Computer science

References:

[1] Preskill, J., Quantum computing in the NISQ era and beyond, Quantum, 2, 79 (2018)
[2] Farhi, E.; Goldstone, J.; Gutmann, S., A quantum approximate optimization algorithm, arXiv:1411.4028 (2014)
[3] Farhi, E.; Goldstone, J.; Gutmann, S., A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem, arXiv:1412.6062 (2015)
[4] Farhi, E.; Harrow, A. W., Quantum supremacy through the quantum approximate optimization algorithm, arXiv:1602.07674 (2019)
[5] Zhou, L.; Wang, S.-T.; Choi, S.; Pichler, H.; Lukin, M. D., Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices, Phys. Rev. X, 10, 021067 (2020)
[6] Borle, A.; Elfving, V. E.; Lomonaco, S. J., Quantum approximate optimization for hard problems in linear algebra, arXiv:2006.15438 (2021)
[7] Jiang, Z.; Rieffel, E. G.; Wang, Z., Near-optimal quantum circuit for grover’s unstructured search using a transverse field, Phys. Rev. A, 95, 062317 (2017)
[8] Hastings, M., Classical and quantum bounded depth approximation algorithms, 2019 Quant. Inf. Comput., 19, 1116-1140 (2018)
[9] Wang, Z.; Hadfield, S.; Jiang, Z.; Rieffel, E. G., Quantum approximate optimization algorithm for maxcut: a fermionic view, Phys. Rev. A, 97, 022304 (2018)
[10] Larkin, J.; Jonsson, M.; Justice, D.; Guerreschi, G. G., Evaluation of QAOA based on the approximation ratio of individual samples, arXiv:2006.04831 (2020)
[11] Bravyi, S.; Kliesch, A.; Koenig, R.; Tang, E., Obstacles to variational quantum optimization from symmetry protection, Phys. Rev. Lett., 125, 260505 (2020)
[12] Phillip C. Lotshaw, R. H.J. O.; Siopsis, G., Empirical performance bounds for quantum approximate optimization, Quantum Inf. Process., 20, 403 (2021) · Zbl 1508.81496
[13] Alam, M.; Ash-Saki, A.; Ghosh, S., Design-space exploration of quantum approximate optimization algorithm under noise, 2020 IEEE Custom Integrated Circuits Conference (CICC), 1-4 (2020)
[14] Alam, M.; Ash-Saki, A.; Ghosh, S., Circuit compilation methodologies for quantum approximate optimization algorithm, 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 215-228 (2020)
[15] Lacroix, N.; Hellings, C.; Andersen, C. K.; Di Paolo, A.; Remm, A.; Lazar, S.; Krinner, S.; Norris, G. J.; Gabureac, M.; Heinsoo, J.; Blais, A.; Eichler, C.; Wallraff, A., Improving the performance of deep quantum optimization algorithms with continuous gate sets, PRX Quantum, 1, 110304 (2020)
[16] Herrman, R.; Lotshaw, P. C.; Ostrowski, J.; Humble, T. S.; Siopsis, G., Multi-angle quantum approximate optimization algorithm, arXiv:2109.11455 (2021)
[17] Majumdar, R., Optimizing ansatz design in QAOA for max-cut, arXiv:2106.02812 (2021)
[18] Dong, D.; Xing, X.; Ma, H.; Chen, C.; Liu, Z.; Rabitz, H., Learning-based quantum robust control: algorithm, applications, and experiments, IEEE Trans. Cybern., 50, 8, 3581-3593 (2020)
[19] Guerreschi, G. G.; Smelyanskiy, M., Practical optimization for hybrid quantum-classical algorithms, arXiv:1701.01450 (2017)
[20] Verdon, G.; Broughton, M.; Biamonte, J., A quantum algorithm to train neural networks using low-depth circuits, arXiv:1712.05304 (2019)
[21] Sweke, R.; Wilde, F.; Meyer, J.; Schuld, M.; Faehrmann, P. K.; Meynard-Piganeau, B.; Eisert, J., Stochastic gradient descent for hybrid quantum-classical optimization, Quantum, 4, 314 (2020)
[22] Liang, D.; Li, L.; Leichenauer, S., Investigating quantum approximate optimization algorithms under bang-bang protocols, Phys. Rev. Res., 2, 033402 (2020)
[23] Bengtsson, A., Improved success probability with greater circuit depth for the quantum approximate optimization algorithm, Phys. Rev. Appl., 14, 034010 (2020)
[24] Campos, E.; Rabinovich, D.; Akshay, V.; Biamonte, J., Training saturation in layerwise quantum approximate optimization, Phys. Rev. A, 104, L030401 (2021)
[25] Rebekah Herrman, T. S.H.; Siopsis, G., Lower bounds on circuit depth of the quantum approximate optimization algorithm, Quantum Inf. Process., 20, 59 (2021) · Zbl 1509.81271
[26] James, G.; Witten, D.; Hastie, T.; Tibshirani, R., An introduction to statistical learning (2013), Springer-Verlag New York · Zbl 1281.62147
[27] Burnham, K. P.; Anderson, D. R., Model selection and multimodel inference: A Practical information-Theoretic approach (2002), Springer-Verlag New York · Zbl 1005.62007
[28] Marshall, J.; Wudarski, F.; Hadfield, S.; Hogg, T., Characterizing local noise in QAOA circuits, IOP SciNotes, 1, 2, 025208 (2020)
[29] Harrigan, M. P.; Sung, K. J.; Neeley, M., Quantum approximate optimization of non-planar graph problems on a planar superconducting processor, Nat. Phys., 17, 332-336 (2021)
[30] Breuer, H. P.; Petruccione, F., The theory of open quantum systems (2007), Oxford University Press · Zbl 1223.81001
[31] Beck, A.; Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2, 1, 183-202 (2009) · Zbl 1175.94009
[32] Pan, Y.; Tong, Y.; Yang, Y., Automatic depth optimization for a quantum approximate optimization algorithm, Phys. Rev. A, 105, 3, 032433 (2022)
[33] von Luxburg, U.; Schölkopf, B., Statistical Learning Theory: Models, Concepts, and Results, (Gabbay, D. M.; Hartmann, S.; Woods, J., Inductive Logic. Inductive Logic, Handbook of the History of Logic, volume 10 (2011), North-Holland), 651-706 · Zbl 1267.68202
[34] McClean, J. R.; Boixo, S.; Smelyanskiy, V. N.; Babbush, R.; Neven, H., Barren plateaus in quantum neural network training landscapes, Nat. Commun., 9, 1, 1-6 (2018)
[35] Grant, E.; Wossnig, L.; Ostaszewski, M.; Benedetti, M., An initialization strategy for addressing barren plateaus in parametrized quantum circuits, Quantum, 3, 214 (2019)
[36] Cerezo, M.; Sone, A.; Volkoff, T.; Cincio, L.; Coles, P. J., Cost function dependent barren plateaus in shallow parametrized quantum circuits, Nat. Commun., 12, 1, 1-12 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.