×

The new Neyman type A generalized odd log-logistic-G-family with cure fraction. (English) Zbl 07584969

Summary: The work proposes a new family of survival models called the Odd log-logistic generalized Neyman type A long-term. We consider different activation schemes in which the number of factors \(M\) has the Neyman type A distribution and the time of occurrence of an event follows the odd log-logistic generalized family. The parameters are estimated by the classical and Bayesian methods. We investigate the mean estimates, biases, and root mean square errors in different activation schemes using Monte Carlo simulations. The residual analysis via the frequentist approach is used to verify the model assumptions. We illustrate the applicability of the proposed model for patients with gastric adenocarcinoma. The choice of the adenocarcinoma data is because the disease is responsible for most cases of stomach tumors. The estimated cured proportion of patients under chemoradiotherapy is higher compared to patients undergoing only surgery. The estimated hazard function for the chemoradiotherapy level tends to decrease when the time increases. More information about the data is addressed in the application section.

MSC:

62-XX Statistics

Software:

JAGS; R

References:

[1] Aarset, M. V., How to identify a bathtub hazard rate, IEEE Trans. Reliab., R-36, 106-108 (1987) · Zbl 0625.62092
[2] Achcar, J. A.; Martinez, E. Z.; Tovar Cuevas, J. R., Bivariate lifetime modelling using copula functions in presence of mixture and non-mixture cure fraction models, censored data and covariates, Model. Assist. Stat. Appl., 11, 261-276 (2016)
[3] Alizadeh, M.; Korkmaz, M. Ç.; Almamy, J. A.; Ahmed, A. A.E., Another odd log-logistic logarithmic class of continuous distributions, Istatistikçiler Dergisi: Istatistik ve Aktüerya, 11, 55-72 (2018)
[4] Barriga, G. D.C.; Cancho, V. G.; Garibay, D. V.; Cordeiro, G. M.; Ortega, E. M.M., A new survival model with surviving fraction: An application to colorectal cancer data, Stat. Methods Med. Res., 28, 2665-2680 (2018)
[5] Berkson, J.; Gage, R. P., Survival curve for cancer patients following treatment, J. Am. Stat. Assoc., 88, 1412-1418 (1952)
[6] Bhalerao, N. R.; Gurland, J.; Tripathi, R. C., A method of increasing power of a test for the negative binomial and Neyman type A distributions, J. Am. Stat. Assoc., 75, 934-938 (1980) · Zbl 0448.62029
[7] Boag, J., Maximum likelihood estimates of the proportion of patients cured by cancer therapy, J. R. Stat. Soc. Ser. B, 11, 15-44 (1949) · Zbl 0034.08001
[8] Cancho, V. G.; Bandyopadhyay, D.; Louzada, F.; Yiqi, B., The destructive negative binomial cure rate model with a latent activation scheme, Stat. Methodol., 13, 48-68 (2013) · Zbl 1365.62410
[9] Cancho, V. G.; Macera, M. A.C.; Suzuki, A. K.; Louzada, F.; Zavaleta, K. E.C., A new long-term survival model with dispersion induced by discrete frailty, Lifetime Data Anal., 26, 221-244 (2019) · Zbl 1436.62475
[10] Cook, R. D., Assessment of local influence (with discussion), J. R. Stat. Soc., 48, 133-169 (1986) · Zbl 0608.62041
[11] Cooner, F.; Banerjee, S.; Carlin, B. P.; Sinha, D., Flexible cure rate modeling under latent activation schemes, J. Am. Stat. Assoc., 102, 560-572 (2007) · Zbl 1172.62331
[12] Cordeiro, G. M.; Alizadeh, M.; Ozel, G.; Hosseini, B.; Ortega, E. M.M.; Altun, E., The generalized odd log-logistic family of distributions: Properties, regression models and applications, J. Stat. Comput. Simul., 87, 908-932 (2017) · Zbl 07191981
[13] Cowles, M. K.; Carlin, B. P., Markov chain Monte Carlo convergence diagnostics: A comparative review, J. Am. Stat. Assoc., 91, 883-904 (1996) · Zbl 0869.62066
[14] David, F. N.; Moore, P. G., Notes on contagious distributions in plant populations, Ann. Botany, 18, 47-53 (1954)
[15] Hashimoto, E. M.; Cordeiro, G. M.; Ortega, E. M.M., The new Neyman type A beta Weibull model with long-term survivors, Comput. Stat., 28, 933-954 (2013) · Zbl 1305.65041
[16] Kim, S.; Chen, M. H.; Dey, D. K., A new threshold regression model for survival data with a cure fraction, Lifetime Data Anal., 17, 101-122 (2011) · Zbl 1322.62281
[17] Korkmaz, M.Ç.; Yousof, H. M.; Alizadeh, M.; Hamedani, G. G., The Topp-Leone generalized odd log-logistic family of distributions: Properties, characterizations and applications, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68, 1506-1527 (2019) · Zbl 1492.60037
[18] Korkmaz, M.Ç.; Yousof, H. M.; Hamedani, G. G., The exponential lindley odd log-logistic-G family: Properties, characterizations and applications, J. Stat. Theory Appl., 17, 554-571 (2018)
[19] Martinez, E. Z.; Achcar, J. A.; Jácome, A. A.; Santos, J. S., Mixture and non mixture cure fraction models based on the generalized modified Weibull distribution with an application to gastric cancer data, Comput. Methods Programs Biomed., 112, 343-355 (2013)
[20] Neyman, J., On a new class of contagious distributions applicable in entomology and bacteriology, Ann. Math. Statist., 10, 35-57 (1939) · JFM 65.0570.03
[21] Ortega, E. M.M.; Cordeiro, G. M.; Campelo, A. K.; Kattan, M. W.; Cancho, V. G., A power series beta Weibull regression model for predicting breast carcinoma, Stat. Med., 34, 1366-1388 (2015)
[22] Ortega, E. M.M.; Cordeiro, G. M.; Hashimoto, E. M.; Suzuki, A. K., Regression models generated by gamma random variables with long-term survivors, Commun. Stat. Appl. Methods, 24, 43-65 (2017)
[23] Plummer, M., Jags: A program for analysis of Bayesian graphical models using Gibbs sampling, in Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vol. 124, Vienna, Austria, 2003, p. 10.
[24] Prataviera, F.; Ortega, E. M.M.; Cordeiro, G. M.; Pescim, R. R.; Verssani, B. A., A new generalized odd log-logistic flexible weibull regression model with applications in repairable systems, Reliab. Eng. Syst. Safety, 176, 13-26 (2018)
[25] R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2019. Available at https://www.r-project.org/.
[26] Ramires, T. G.; Hens, N.; Cordeiro, G. M.; Ortega, E. M.M., Estimating nonlinear effects in the presence of cure fraction using a semi-parametric regression model, Comput. Stat., 33, 709-730 (2017) · Zbl 1417.62326
[27] Ramires, T. G.; Ortega, E. M.M.; Lemonte, A. J.; Hens, N.; Cordeiro, G. M., A flexible bimodal model with long-term survivors and different regression structures, Comm. Statist. Simulation Comput., 49, 2639-2660 (2020) · Zbl 1489.62353
[28] Rodrigues, J.; Cancho, V. G.; de Castro, M.; Louzada-Neto, F., On the unification of the long-term survival models, Statist. Probab. Lett., 79, 753-759 (2009) · Zbl 1349.62485
[29] Suzuki, A. K.; Barriga, G. D.; Louzada, F.; Cancho, V. G., A general long-term aging model with different underlying activation mechanisms: Modeling, bayesian estimation, and case influence diagnostics, Comm. Statist. Theory Methods, 46, 3080-3098 (2017) · Zbl 1402.62243
[30] Yakovlev, A. Y.; Tsodikov, A. D., Stochastic Models of Tumor Latency and Their Biostatistical Applications (1996), World Scientifc: World Scientifc, Singapore · Zbl 0919.92024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.