×

A new nonlocal low-rank regularization method with applications to magnetic resonance image denoising. (English) Zbl 07525943

Summary: Magnetic resonance (MR) images are frequently corrupted by Rician noise during image acquisition and transmission. And it is very challenging to restore MR data because Rician noise is signal-dependent. By exploring the nonlocal self-similarity of natural images and further using the low-rank prior of the matrices formed by nonlocal similar patches for 2D data or cubes for 3D data, we propose in this paper a new nonlocal low-rank regularization (NLRR) method including an optimization model and an efficient iterative algorithm to remove Rician noise. The proposed mathematical model consists of a data fidelity term derived from a maximum a posteriori estimation and a NLRR term using the log-det function. The resulting model in terms of approximated patch/cube matrices is non-convex and non-smooth. To solve this model, we propose an alternating reweighted minimization (ARM) algorithm using the Lipschitz-continuity of the gradient of the fidelity term and the concavity of the logarithmic function in the log-det function. The subproblems of the ARM algorithm have closed-form solutions and its limit points are first-order critical points of the problem. The ARM algorithm is further integrated with a two-stage scheme to enhance the denoising performance of the proposed NLRR method. Experimental results tested on 2D and 3D MR data, including simulated and real data, show that the NLRR method outperforms existing state-of-the-art methods for removing Rician noise.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
92C55 Biomedical imaging and signal processing
Full Text: DOI

References:

[1] Wright, G. A., Magnetic resonance imaging, IEEE Signal Process. Mag., 14, 56-66 (1997) · doi:10.1109/79.560324
[2] Guido, G.; Kubler, O.; Kikinis, R.; Jolesz, F. A., Nonlinear anisotropic filtering of MRI data, IEEE Trans. Med. Imag., 11, 221-232 (1992) · doi:10.1109/42.141646
[3] Krissian, K.; Aja-Fernández, S., Noise-driven anisotropic diffusion filtering of MRI, IEEE Trans. Image Process., 18, 2265-2274 (2009) · Zbl 1371.94201 · doi:10.1109/tip.2009.2025553
[4] Nowak, R. D., Wavelet-based Rician noise removal for magnetic resonance imaging, IEEE Trans. Image Process., 8, 1408-1419 (1999) · doi:10.1109/83.791966
[5] Getreuer, P.; Tong, M.; Vese, L. A., A variational model for the restoration of MR images corrupted by blur and Rician noise, vol 6938, 686-698 (2011), Berlin: Springer, Berlin
[6] Chen, L.; Zeng, T., A convex variational model for restoring blurred images with large Rician noise, J. Math. Imaging Vis., 53, 92-111 (2015) · Zbl 1357.94017 · doi:10.1007/s10851-014-0551-y
[7] Chen, W.; You, J.; Chen, B.; Pan, B.; Li, L.; Pomeroy, M.; Liang, Z., A sparse representation and dictionary learning based algorithm for image restoration in the presence of Rician noise, Neurocomputing, 286, 130-140 (2018) · doi:10.1016/j.neucom.2018.01.066
[8] Jiang, D.; Dou, W.; Vosters, L.; Xu, X.; Sun, Y.; Tan, T., Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network, Japan. J. Radiol., 36, 566-574 (2018) · doi:10.1007/s11604-018-0758-8
[9] Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L., Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26, 3142-3155 (2017) · Zbl 1409.94754 · doi:10.1109/tip.2017.2662206
[10] Buades, A.; Coll, B.; Morel, J-M, A non-local algorithm for image denoising, vol 2, 60-65 (2005), Piscataway, NJ: IEEE, Piscataway, NJ · Zbl 1108.94004
[11] Manjon, J.; Carbonellcaballero, J.; Lull, J.; Garciamarti, G.; Martibonmati, L.; Robles, M., MRI denoising using non-local means, Med. Image Anal., 12, 514-523 (2008) · doi:10.1016/j.media.2008.02.004
[12] Manjón, J. V.; Coupé, P.; Buades, A.; Louis Collins, D.; Robles, M., New methods for MRI denoising based on sparseness and self-similarity, Med. Image Anal., 16, 18-27 (2012) · doi:10.1016/j.media.2011.04.003
[13] Foi, A., Noise estimation and removal in MR imaging: the variance-stabilization approach, 1809-1814 (2011), Piscataway, NJ: IEEE, Piscataway, NJ
[14] Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K., Image denoising by sparse 3D transform-domain collaborative filtering, IEEE Trans. Image Process., 16, 2080-2095 (2007) · doi:10.1109/tip.2007.901238
[15] Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A., Nonlocal transform-domain filter for volumetric data denoising and reconstruction, IEEE Trans. Image Process., 22, 119-133 (2013) · Zbl 1373.94273 · doi:10.1109/tip.2012.2210725
[16] Zhang, X.; Xu, Z.; Jia, N.; Yang, W.; Feng, Q.; Chen, W.; Feng, Y., Denoising of 3D magnetic resonance images by using higher-order singular value decomposition, Med. Image Anal., 19, 75-86 (2015) · doi:10.1016/j.media.2014.08.004
[17] Kong, Z.; Han, L.; Liu, X.; Yang, X., A new 4D nonlocal transform-domain filter for 3D magnetic resonance images denoising, IEEE Trans. Med. Imaging, 37, 941-954 (2018) · doi:10.1109/tmi.2017.2778230
[18] Dong, W.; Shi, G.; Li, X.; Ma, Y.; Huang, F., Compressive sensing via nonlocal low-rank regularization, IEEE Trans. Image Process., 23, 3618-3632 (2014) · Zbl 1374.94085 · doi:10.1109/tip.2014.2329449
[19] Liu, X.; Lu, J.; Shen, L.; Xu, C.; Xu, Y., Multiplicative noise removal: nonlocal low-rank model and its proximal alternating reweighted minimization algorithm, SIAM J. Imaging Sci., 13, 1595-1629 (2020) · Zbl 1501.94003 · doi:10.1137/20m1313167
[20] Huang, T.; Dong, W.; Xie, X.; Shi, G.; Bai, X., Mixed noise removal via Laplacian scale mixture modeling and nonlocal low-rank approximation, IEEE Trans. Image Process., 26, 3171-3186 (2017) · Zbl 1409.94240 · doi:10.1109/tip.2017.2676466
[21] Bowman, F., Introduction to Bessel Functions (1958), New York: Dover, New York · JFM 64.1087.01
[22] Lu, J.; Tian, J.; Jiang, Q.; Liu, X.; Hu, Z.; Zou, Y., Rician noise removal via weighted nuclear norm penalization, Appl. Comput. Harmon. Anal., 53, 180-198 (2021) · Zbl 1469.65107 · doi:10.1016/j.acha.2020.12.005
[23] Lu, Z.; Zhang, Y.; Lu, J., ℓ_p regularized low-rank approximation via iterative reweighted singular value minimization, Comput. Optim. Appl., 68, 619-642 (2017) · Zbl 1388.90096 · doi:10.1007/s10589-017-9933-6
[24] Lewis, A. S.; Sendov, H. S., Nonsmooth analysis of singular values: I. Theory, Set-Valued Anal., 13, 213-241 (2005) · Zbl 1129.49025 · doi:10.1007/s11228-004-7197-7
[25] Bertsekas, D. P., Nonlinear Programming (1999), Belmont, MA: Athena Scientific, Belmont, MA · Zbl 1015.90077
[26] Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L., Weighted nuclear norm minimization and its applications to low level vision, Int. J. Comput. Vis., 121, 183-208 (2017) · Zbl 1458.68231 · doi:10.1007/s11263-016-0930-5
[27] Bolte, J.; Sabach, S.; Teboulle, M., Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program., 146, 459-494 (2014) · Zbl 1297.90125 · doi:10.1007/s10107-013-0701-9
[28] Sun, T.; Jiang, H.; Cheng, L., Convergence of proximal iteratively reweighted nuclear norm algorithm for image processing, IEEE Trans. Image Process., 26, 5632-5644 (2017) · Zbl 1409.94567 · doi:10.1109/tip.2017.2745200
[29] Gibson, J. D.; Bovik, A. C., Handbook of Image and Video Processing (2000), New York: Academic, New York · Zbl 0967.68155
[30] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 600-612 (2004) · doi:10.1109/tip.2003.819861
[31] Marcus, D. S.; Wang, T. H.; Parker, J.; Csernansky, J. G.; Morris, J. C.; Buckner, R. L., Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults, J. Cogn. Neurosci., 19, 1498-1507 (2007) · doi:10.1162/jocn.2007.19.9.1498
[32] Cocosco, C. A.; Kollokian, V.; Kwan, R. K-S; Evans, A. C., Brainweb: online interface to a 3D MRI simulated brain database, NeuroImage, 5, S425 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.