×

A new FV scheme and fast cell-centered multigrid solver for 3D anisotropic diffusion equations with discontinuous coefficients. (English) Zbl 07524790

Summary: In this paper, an efficient cell-centered extrapolation cascadic multigrid (CEXCMG) method is proposed for solving large linear system of equations resulting from finite volume (FV) discretizations of three dimensional (3D) anisotropic diffusion equations with discontinuous coefficients. For cell-centered FV schemes, the values at vertex need to be approximated often by a linear combination of neighboring cell-centered values. In the literature, the weighted coefficients are obtained by solving local linear system of equations which is costly in 3D. One of the novelties of this paper is a new approach for obtaining vertex values by interpolating the cell-centered ones, which avoids solving local linear system of equations even with arbitrary diffusion tensors. Another main novelty of this paper is a new cascadic multigrid solver based on a prolongation operator, the newly developed explicit gradient transfer method, and a splitting extrapolation operator for solving 3D anisotropic diffusion equations with discontinuous coefficients. Numerical experiments are presented to demonstrate the efficiency and robustness of the CEXCMG method in terms of the mesh size and the contrast in the coefficients of the anisotropic diffusion tensor.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Jxx Elliptic equations and elliptic systems
Full Text: DOI

References:

[1] (Ewing, R. E., The Mathematics of Reservoir Simulation. The Mathematics of Reservoir Simulation, Frontiers in Applied Mathematics, vol. 1 (1983), SIAM: SIAM Bellingham, WA) · Zbl 0533.00031
[2] Yorkey, T. J.; Webster, J. G.; Tompkins, W. J., Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Eng., 34, 843-852 (1987)
[3] Yang, Y.; Udaykumar, H., Sharp interface Cartesian grid method III: solidification of pure materials and binary solutions, J. Comput. Phys., 210, 1, 55-74 (2005) · Zbl 1154.76360
[4] Dong, B.; Feng, X.; Li, Z., An FE-FD method for anisotropic elliptic interface problems, SIAM J. Sci. Comput., 42, 4, B1041-B1066 (2020) · Zbl 1452.65332
[5] Wesseling, P., Cell centered multigrid for interface problems, J. Comput. Phys., 79, 85-91 (1988) · Zbl 0658.65095
[6] Khalil, M.; Wesseling, P., Vertex-centered and cell-centered multigrid for interface problems, J. Comput. Phys., 98, 1-10 (1992) · Zbl 0753.65091
[7] Kwak, D., V-cycle multigrid for cell-centered finite differences, SIAM J. Sci. Stat. Comput., 21, 2, 552-564 (1999) · Zbl 0952.65101
[8] Alcouffe, R. E.; Brandt, A.; Dendy, J. E.; Painter, J. W., The multi-grid methods for the diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Stat. Comput., 2, 4, 430-454 (1981) · Zbl 0474.76082
[9] Moghaderi, H.; Dehghan, M.; Donatelli, M.; Mazza, M., Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations, J. Comput. Phys., 350, 992-1011 (2017) · Zbl 1380.65240
[10] Coco, A.; Russo, G., Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface, J. Comput. Phys., 361, 299-330 (2018) · Zbl 1422.65306
[11] Donatelli, M.; Mazza, M.; Serra-Capizzano, S., Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations, SIAM J. Sci. Comput., 40, 6, A4007-A4039 (2018) · Zbl 1405.65161
[12] Kumar, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W., On local Fourier analysis of multigrid methods for PDEs with jumping and random coefficients, SIAM J. Sci. Comput., 41, 3, A1385-A1413 (2019) · Zbl 1435.65053
[13] Donatelli, M.; Krause, R.; Mazza, M.; Trotti, K., Multigrid preconditioners for anisotropic space-fractional diffusion equations, Adv. Comput. Math., 46, 1-31 (2020) · Zbl 1443.65122
[14] Pan, K. J.; Sun, H. W.; Xu, Y.; Xu, Y. F., An efficient multigrid solver for two-dimensional spatial fractional diffusion equations with variable coefficients, Appl. Math. Comput., 402, Article 126091 pp. (2021) · Zbl 1510.65202
[15] Pang, H. K.; Sun, H. W., Multigrid method for fractional diffusion equations, J. Comput. Phys., 231, 2, 693-703 (2012) · Zbl 1243.65117
[16] Moghaderi, H.; Dehghan, M.; Hajarian, M., A fast and efficient two-grid method for solving d-dimensional Poisson equations, Numer. Algorithms, 72, 3, 483-537 (2016) · Zbl 1342.65226
[17] Dehghan, M.; Mohebbi, A., Multigrid solution of high order discretisation for three-dimensional biharmonic equation with Dirichlet boundary conditions of second kind, Appl. Math. Comput., 180, 2, 575-593 (2006) · Zbl 1102.65125
[18] Behie, A.; Forsyth, P. A., Multi-grid solution of three-dimensional problems with discontinuous coefficients, Appl. Math. Comput., 13, 3-4, 229-240 (1983) · Zbl 0534.65064
[19] Dendy, J. E., Two multigrid methods for three-dimensional problems with discontinuous and anisotropic coefficients, SIAM J. Sci. Stat. Comput., 8, 5, 673-685 (1987) · Zbl 0659.65097
[20] Molenaar, J., A simple cell-centered multigrid method for 3D interface problems, Comput. Math. Appl., 31, 9, 25-33 (1996) · Zbl 0855.65126
[21] Schaffer, S., A semicoarsening multigrid method for elliptic partial differential equations with highly discontinuous and anisotropic coefficients, SIAM J. Sci. Comput., 20, 1, 228-242 (1998) · Zbl 0913.65111
[22] Xu, J.; Zhu, Y., Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients, Math. Models Methods Appl. Sci., 18, 01, 77-105 (2008) · Zbl 1151.65097
[23] Zhukov, V. T.; Novikova, N. D.; Feodoritova, O. B., Multigrid method for elliptic equations with anisotropic discontinuous coefficients, Comput. Math. Math. Phys., 55, 7, 1150-1163 (2015) · Zbl 1325.65171
[24] Feng, Wenqiang; Guo, Zhenlin; Lowengrub, John S.; Wise, Steven M., A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-Cartesian grids, J. Comput. Phys., 352, 463-497 (2018) · Zbl 1380.65402
[25] Shi, Z.; Xu, X.; Man, H., Cascadic multigrid for finite volume methods for elliptic problems, J. Comput. Math., 22, 6, 905-920 (2004) · Zbl 1069.65137
[26] Bornemann, F. A.; Deuflhard, P., The cascadic multigrid method for elliptic problems, Numer. Math., 75, 135-152 (1996) · Zbl 0873.65107
[27] Chen, C. M.; Hu, H. L.; Xie, Z. Q., Analysis of extrapolation cascadic multigrid method (EXCMG), Sci. China Ser. A, Math., 51, 1349-1360 (2008) · Zbl 1157.65062
[28] Hu, H.; Ren, Z.; He, D.; Pan, K., On the convergence of an extrapolation cascadic multigrid method for elliptic problems, Comput. Math. Appl., 74, 4, 759-771 (2017) · Zbl 1384.65087
[29] Pan, K. J.; He, D. D.; Hu, H. L., An extrapolation cascadic multigrid method combined with a fourth-order compact scheme for 3D Poisson equation, J. Sci. Comput., 70, 1180-1203 (2017) · Zbl 1366.65095
[30] Pan, K. J.; He, D. D.; Hu, H. L.; Ren, Z. Y., A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems, J. Comput. Phys., 344, 499-515 (2017) · Zbl 1380.65407
[31] Shakeri, F.; Dehghan, M., A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations, Appl. Numer. Math., 61, 1, 1-23 (2011) · Zbl 1427.76276
[32] Sheng, Z.; Yuan, G., A nine-point scheme for the approximation of diffusion operators on distorted quadrilateral meshes, SIAM J. Sci. Comput., 30, 1341-1361 (2008) · Zbl 1167.65049
[33] Li, D.; Shui, H.; Tang, M., On the finite difference scheme of two-dimensional parabolic equation in a non-rectangular mesh, J. Numer. Methods Comput. Appl., 1, 217-224 (1980)
[34] Shepard, D., A two-dimensional interpolation function for irregularly-spaced data, (Proceedings of the 23d ACM National Conference (1968), ACM: ACM New York, NY, USA), 517-524
[35] Agelas, L.; Eymard, R.; Herbin, R., A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media, C. R. Math. Acad. Sci. Paris, 347, 11, 673-676 (2009) · Zbl 1166.65051
[36] Lai, X.; Sheng, Z.; Yuan, G., A finite volume scheme for three-dimensional diffusion equations, Commun. Comput. Phys., 18, 3, 650-672 (2015) · Zbl 1388.65080
[37] Zhang, Q.; Sheng, Z.; Yuan, G., A monotone finite volume scheme for diffusion equations on general non-conforming meshes, Appl. Math. Comput., 311, 300-313 (2017) · Zbl 1426.65160
[38] Eymard, R.; Herbin, R.; Guichard, C., Small-stencil 3D schemes for diffusive flows in porous media, ESAIM: Math. Model. Numer. Anal., 46, 2, 265-290 (2012) · Zbl 1271.76324
[39] Stüben, K., Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput., 13, 419-451 (1983) · Zbl 0533.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.