×

A two-stage variable-separation Kalman filter for data assimilation. (English) Zbl 07508537

Summary: This work presents a two-stage variable-separation Kalman filter (T-VSKF) to the combined parameters and state estimation in Bayesian data assimilation. The variable-separation method is used to construct a surrogate model for the forward problem and is able to significantly reduces the online computation for assimilation update. The stochastic basis functions from the variable-separation method are used to approximately express the unknowns of estimation. Then a sampling-free method and the variable-separation method are integrated to obtain an approximation of the posterior distribution in the Bayesian exploration. In T-VSKF, we update the coefficients of the stochastic basis functions for the unknowns. The proposed T-VSKF method has two stages. The first stage is to only update the coefficient corresponding to the constant basis function by the Kalman filter. Then all the coefficients are dynamically updated by the proposed method in the second stage. The first stage is to locate an approximate mean and the second stage is to improve the mean and reduce the uncertainty of the unknown parameters and state. T-VSKF significantly mitigates the underestimation for the variance of the posterior often occurred in ensemble Kalman filters. Moreover, the computation efficiency of T-VSKF is slightly impacted as the dimension of parameter and state increases. A few numerical data assimilation examples are presented in heterogenous porous media applications and nonlocal diffusion. The numerical results show the advantages of T-VSKF over some classical filter methods in the data assimilation.

MSC:

65Cxx Probabilistic methods, stochastic differential equations
62Fxx Parametric inference
60Hxx Stochastic analysis
Full Text: DOI

References:

[1] Ba, Y.; Jiang, L.; Ou, N., A two-stage ensemble Kalman filter based on multiscale model reduction for inverse problems in time fractional diffusion-wave equations, J. Comput. Phys., 374, 300-330 (2018) · Zbl 1416.65163
[2] Ba, Y.; Jiang, L.; Ou, N., Variable-separation based iterative ensemble smoother for Bayesian inverse problems in anomalous diffusion reaction models, Int. J. Uncertain. Quantificat., 9, 245-273 (2019) · Zbl 1498.62059
[3] Blanchard, E. D., Polynomial chaos approaches to parameter estimation and control design for mechanical systems with uncertain parameters (2010), Virginia Tech, PhD thesis
[4] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737-2764 (2010) · Zbl 1217.65169
[5] Ernst, O. G.; Sprungk, B.; Starkloff, H. J., Analysis of the ensemble and polynomial chaos Kalman filters in Bayesian inverse problems, SIAM/ASA J. Uncertain. Quantificat., 3, 823-851 (2015) · Zbl 1339.60041
[6] Evensen, G., Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., Oceans, 99, 10143-10162 (1994)
[7] Evensen, G., Sampling strategies and square root analysis schemes for the EnKF, Ocean Dyn., 54, 539-560 (2004)
[8] Evensen, G., The ensemble Kalman filter for combined state and parameter estimation, IEEE Control Syst. Mag., 29, 83-104 (2009) · Zbl 1395.93534
[9] Gamerman, D.; Lopes, H. F., Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference (2006), Chapman and Hall/CRC · Zbl 1137.62011
[10] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (1991) · Zbl 0722.73080
[11] Gilks, W.; Richardson, S.; Spiegelhalter, D., Markov Chain Monte Carlo in Practice (1996) · Zbl 0832.00018
[12] Huang, Y.; Oberman, A., Numerical methods for the fractional laplacian: a finite difference-quadrature approach, SIAM J. Numer. Anal., 52, 3056-3084 (2014) · Zbl 1316.65071
[13] Iglesias, M. A.; Law, K. J.; Stuart, A. M., Evaluation of Gaussian approximations for data assimilation in reservoir models, Comput. Geosci., 17, 851-885 (2013) · Zbl 1393.86020
[14] Jafarpour, B.; McLaughlin, D. B., History matching with an ensemble Kalman filter and discrete cosine parameterization, Comput. Geosci., 12, 227-244 (2008) · Zbl 1159.86306
[15] Jiang, L.; Ou, N., Bayesian inference using intermediate distribution based on coarse multiscale model for time fractional diffusion equations, Multiscale Model. Simul., 16, 327-355 (2018) · Zbl 1393.65032
[16] Kalman, R. E., A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 35-45 (1960)
[17] Li, J.; Marzouk, Y. M., Adaptive construction of surrogates for the Bayesian solution of inverse problems, SIAM J. Sci. Comput., 36, A1163-A1186 (2014) · Zbl 1415.65009
[18] Li, J.; Xiu, D., A generalized polynomial chaos based ensemble Kalman filter with high accuracy, J. Comput. Phys., 228, 5454-5469 (2009) · Zbl 1280.93084
[19] Li, Q.; Jiang, L., A novel variable-separation method based on sparse and low rank representation for stochastic partial differential equations, SIAM J. Sci. Comput., 39, A2879-A2910 (2017) · Zbl 1379.65004
[20] Man, J.; Li, W.; Zeng, L.; Wu, L., Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter, Adv. Water Resour., 92, 258-270 (2016)
[21] Marzouk, Y.; Xiu, D., A stochastic collocation approach to Bayesian inference in inverse problems, Commun. Comput. Phys., 6, 826-847 (2009) · Zbl 1364.62064
[22] Matthies, H. G., Stochastic finite elements: computational approaches to stochastic partial differential equations, J. Appl. Math. Mech., 88, 849-873 (2008) · Zbl 1158.65009
[23] Oldham, K.; Spanier, J., The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (1974), Elsevier · Zbl 0292.26011
[24] Ou, N.; Jiang, L.; Lin, G., A new bi-fidelity model reduction method for Bayesian inverse problems, Int. J. Numer. Methods Eng., 119, 941-963 (2019) · Zbl 07863650
[25] Padgett, W. J.; Taylor, R. L., Laws of Large Numbers for Normed Linear Spaces and Certain Fréchet Spaces (1973), Springer-Verlag: Springer-Verlag Berlin, New York · Zbl 0275.60010
[26] Pajonk, O.; Rosić, B. V.; Litvinenko, A.; Matthies, H. G., A deterministic filter for non-Gaussian Bayesian estimation-applications to dynamical system estimation with noisy measurements, Phys. D, Nonlinear Phenom., 241, 775-788 (2012) · Zbl 1237.62129
[27] Pajonk, O.; Rosić, B. V.; Matthies, H. G., Sampling-free linear Bayesian updating of model state and parameters using a square root approach, Comput. Geosci., 55, 70-83 (2013)
[28] Pence, B. L.; Fathy, H. K.; Stein, J. L., A maximum likelihood approach to recursive polynomial chaos parameter estimation, (Proceedings of the 2010 American Control Conference (2010), IEEE), 2144-2151
[29] Rosić, B. V.; Litvinenko, A.; Pajonk, O.; Matthies, H. G., Sampling-free linear Bayesian update of polynomial chaos representations, J. Comput. Phys., 231, 5761-5787 (2012) · Zbl 1277.60114
[30] Rudolf, H., Applications of Fractional Calculus in Physics (2000), World Scientific · Zbl 0998.26002
[31] Saad, G.; Ghanem, R., Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter, Water Resour. Res., 45 (2009)
[32] Stuart, A. M., Inverse problems: a Bayesian perspective, Acta Numer., 19, 451-559 (2010) · Zbl 1242.65142
[33] Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation (2005), SIAM · Zbl 1074.65013
[34] Tarantola, A., Popper, Bayes and the inverse problem, Nat. Phys., 2, 492-494 (2006)
[35] Van Leeuwen, P. J.; Evensen, G., Data assimilation and inverse methods in terms of a probabilistic formulation, Mon. Weather Rev., 124, 2898-2913 (1996)
[36] Vo, H. X.; Durlofsky, L. J., A new differentiable parameterization based on principal component analysis for the low-dimensional representation of complex geological models, Math. Geosci., 46, 775-813 (2014) · Zbl 1323.86048
[37] Vo, H. X.; Durlofsky, L. J., Data assimilation and uncertainty assessment for complex geological models using a new PCA-based parameterization, Comput. Geosci., 19, 747-767 (2015) · Zbl 1392.86057
[38] Whitaker, J. S.; Hamill, T. M., Ensemble data assimilation without perturbed observations, Mon. Weather Rev., 130, 1913-1924 (2002)
[39] Wiener, N., The homogeneous chaos, Am. J. Math., 60, 897-936 (1938) · JFM 64.0887.02
[40] Zeng, L.; Chang, H.; Zhang, D., A probabilistic collocation-based Kalman filter for history matching, SPE J., 16, 294-306 (2011)
[41] Zhou, Y. B., Model reduction for nonlinear dynamical systems with parametric uncertainties (2012), Massachusetts Institute of Technology, PhD thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.