×

Lattice Boltzmann method for heterogeneous multi-class traffic flow. (English) Zbl 07476665

Summary: Traffic modeling often keeps the mesoscopic scale in the theoretical sphere because of the integro-differential nature of its equations. In the present work, it is suggested to use the lattice Boltzmann method to overcome these difficulties while benefiting the strong theoretical foundation of the method. An alternative version of the lattice Boltzmann method for multi-class and heterogeneity in traffic flow is elaborated in this paper. Its ability to reproduce the fundamental diagram is proved, for both single-class and multi-class flows. This allows easily simulating complex and realistic cases of mixture of multi-class traffic flow. These simulations are able to capture jamming in various traffic situations such as road merging, reduction of the number of lanes or change of speed limits.

MSC:

82-XX Statistical mechanics, structure of matter

References:

[1] Bagnerini, P.; Rascle, M., A multiclass homogenized hyperbolic model of traffic flow, SIAM J. Math. Anal., 35, 4, 949-73 (2003) · Zbl 1052.35121
[2] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 3, 511-25 (1954) · Zbl 0055.23609
[3] Cercignani, C., The Boltzmann equation and its applications. Vol. 67 of Applied mathematical sciences (1988), New York, NY: Springer New York, New York, NY · Zbl 0646.76001
[4] Chanut, S., Modélisation dynamique macroscopique de l’écoulement d’un trafic routier hétérogène poids lourds et véhicules légers (2005), Institut National des Sciences Appliquées de Lyon
[5] Chen, C.; Li, L.; Hu, J.; Geng, C., Calibration of MITSIM and IDM car-following model based on NGSIM trajectory datasets, 48-53 (2010)
[6] Chopard, B.; Dupuis, A.; Masselot, A.; Luthi, P., Cellular automata and lattice Boltzmann techniques: An approach to model and simulate complex systems, Advs. Complex Syst., 05, 2-3, 103-246 (2002) · Zbl 1090.82030
[7] Chopard, B.; Luthi, P. O.; Queloz, P.-A., Cellular automata model of car traffic in a two-dimensional street network, J. Phys. A: Math. Gen., 29, 10, 2325-36 (1996) · Zbl 0899.60099
[8] Costeseque, G.; Duret, A., 28 (2015)
[9] Daganzo, C. F., A continuum theory of traffic dynamics for freeways with special lanes, Transp. Res. Part B: Methodol., 31, 2, 83-102 (1997)
[10] Delis, A. I.; Nikolos, I. K.; Papageorgiou, M., A macroscopic multi-lane traffic flow model for ACC/CACC traffic dynamics, Transp. Res. Rec, 2672, 20, 178-92 (2018)
[11] Drake, J. S.; Schofer, J. L.; May, A. D. Jr., A statistieal analysis of speed density hypotheses, Charact. Traffic Flow, 45, 53-87 (1967)
[12] Ez-Zahraouy, H.; Jetto, K.; Benyoussef, A., The effect of mixture lengths of vehicles on the traffic flow behaviour in one-dimensional cellular automaton, Eur. Phys. J. B, 40, 1, 111-7 (2004)
[13] Gartner, N. H.; Wagner, P., Analysis of traffic flow characteristics on signalized arterials, Transp. Res. Rec, 1883, 1, 94-100 (2004)
[14] Gazis, D. C.; Herman, R.; Rothery, R. W., nonlinear follow-the-leader models of traffic flow, Oper. Res, 9, 4, 545-67 (1961) · Zbl 0096.14205
[15] Gipps, P. G., A behavioural car-following model for computer simulation, Transp. Res. Part B: Methodol., 15, 2, 105-11 (1981)
[16] Greenberg, H., An analysis of traffic flow, Oper. Res, 7, 1, 79-85 (1959) · Zbl 1414.90087
[17] Greenshields, B. D., 448-77 (1935)
[18] He, X.; Luo, L.-S., Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56, 6, 6811-7 (1997)
[19] Helbing, D., Traffic and related self-driven many-particle systems, Rev. Mod. Phys., 73, 4, 1067-141 (2001)
[20] Helbing, D.; Hennecke, A.; Shvetsov, V.; Treiber, M., Micro- and macro-simulation of freeway traffic, Math. Comput. Modell, 35, 5-6, 517-47 (2002) · Zbl 0994.90025
[21] Hidas, P., Modelling lane changing and merging in microscopic traffic simulation, Transp. Res. Part C: Emerg. Technol., 10, 5-6, 351-71 (2002)
[22] Holme, R.; Rothman, D. H., Lattice-gas and lattice-Boltzmann models of miscible fluids, J. Stat. Phys., 68, 3-4, 409-29 (1992) · Zbl 0925.82035
[23] Hoogendoorn, S. P.; Bovy, P. H. L., Continuum modeling of multiclass traffic flow, Transp. Res. Part B: Methodol., 34, 2, 123-46 (2000)
[24] Hoogendoorn, S. P.; Bovy, P. H. L., Platoon-based multiclass modeling of multilane traffic flow, Netw. Spat. Econ., 1, 1-2, 137-66 (2001) · doi:10.1023/A:1011533228599
[25] Inamuro, T.; Yoshino, M.; Inoue, H.; Mizuno, R.; Ogino, F., A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem, Comput. Phys, 179, 1, 201-15 (2002) · Zbl 1065.76164
[26] Jiang, R.; Wu, Q.-S., Extended speed gradient model for mixed traffic, Transp. Res. Rec, 1883, 1, 78-84 (2004)
[27] Kerner, B., Congested traffic flow: Observations and theory, Transp. Res. Rec, 1678, 1, 160-7 (1999)
[28] Kerner, B. S.; Klenov, S. L.; Wolf, D. E., Cellular automata approach to three-phase traffic theory, J. Phys. A: Math. Gen., 35, 47, 9971-10013 (2002) · Zbl 1061.90021
[29] Kesting, A.; Treiber, M.; Helbing, D., Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity, Philos. Trans. A Math. Phys. Eng. Sci., 368, 1928, 4585-605 (2010) · Zbl 1202.93093 · doi:10.1098/rsta.2010.0084
[30] Lan, L. W.; Chang, C.-W., Inhomogeneous cellular automata modeling for mixed traffic with cars and motorcycles, ATR, 39, 3, 323-49 (2005)
[31] Lighthill, M. J.; Whitham, G. B., On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. R. Soc. A: Math. Phys. Eng. Sci., 229, 1178, 317-45 (1955) · Zbl 0064.20906
[32] Logghe, S.; Immers, L. H., Multi-class kinematic wave theory of traffic flow, Transp. Res. Part B: Methodol., 42, 6, 523-41 (2008)
[33] Meng, J.; Qian, Y.; Li, X.; Dai, S., Lattice Boltzmann model for traffic flow, Phys. Rev. E Stat. Nonlin. Soft. Matter Phys., 77, 3-2, 036108 (2008) · doi:10.1103/PhysRevE.77.036108
[34] Munjal, P. K.; Pahl, J., An analysis of the Boltzmann-type statistical models for multi-lane traffic flow, Transp. Res, 3, 1, 151-63 (1969) · doi:10.1016/0041-1647(69)90112-9
[35] Nagel, K.; Schreckenberg, M., A cellular automaton model for freeway traffic, J. Phys. I France, 2, 12, 2221-9 (1992)
[36] Nagel, K.; Wolf, D. E.; Wagner, P.; Simon, P., Two-lane traffic rules for cellular automata: A systematic approach, Phys. Rev. E, 58, 2, 1425-37 (1998)
[37] Newell, G. F., Statistical analysis of the flow of highway traffic through a signalized intersection, Quart. Appl. Math., 13, 4, 353-69 (1956) · Zbl 0074.12602
[38] Newell, G. F., A simplified theory of kinematic waves in highway traffic, Part II: Queueing at freeway bottlenecks, Transp. Res. Part B: Methodol., 27, 4, 289-303 (1993)
[39] Newell, G. F., A simplified car-following theory: A lower order model, Transp. Res. Part B: Methodol., 36, 3, 195-205 (2002)
[40] Ngoduy, D., Multiclass first-order traffic model using stochastic fundamental diagrams, Transportmetrica, 7, 2, 111-25 (2011)
[41] Paveri-Fontana, S. L., On Boltzmann-like treatments for traffic flow: A critical review of the basic model and an alternative proposal for dilute traffic analysis, Transp. Res, 9, 4, 225-35 (1975)
[42] Payne, H. J., 28, 51-61 (1971)
[43] Peeta, S.; Zhang, P.; Zhou, W., Behavior-based analysis of freeway car-truck interactions and related mitigation strategies, Transp. Res. Part B: Methodol., 39, 5, 417-51 (2005)
[44] Pipes, L. A., Car following models and the fundamental diagram of road traffic, Transp. Res, 1, 1, 21-9 (1967)
[45] Pourabdollah, M.; Bjarkvik, E.; Furer, F.; Lindenberg, B.; Burgdorf, K., Calibration and evaluation of car following models using real-world driving data, 1-6 (2017) · doi:10.1109/ITSC.2017.8317836
[46] Prigogine, I.; Andrews, F. C., A Boltzmann-like approach for traffic flow, Oper. Res, 8, 6, 789-97 (1960) · Zbl 0249.90026
[47] Prigogine, I.; Herman, R. C., Kinetic theory of vehicular traffic (1971), New York: American Elsevier Pub. Co, New York · Zbl 0226.90011
[48] Richards, P. I., Shock waves on the highway, Oper. Res, 4, 1, 42-51 (1956) · Zbl 1414.90094
[49] Schadschneider, A.; Schreckenberg, M., Cellular automation models and traffic flow, J. Phys. A: Math. Gen., 26, 15, L679-L683 (1993)
[50] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics, 47, 3, 1815-9 (1993) · doi:10.1103/physreve.47.1815
[51] Shi, W.; Lu, W.-Z.; Xue, Y.; He, H.-D., Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure, Phys. A., 443, 22-31 (2016) · Zbl 1400.90125
[52] Shvetsov, V.; Helbing, D., Macroscopic dynamics of multilane traffic, Phys. Rev. E Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics, 59, 6, 6328-39 (1999) · doi:10.1103/physreve.59.6328
[53] Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond. Numerical mathematics and scientific computation (2001), Oxford: Clarendon Press; Oxford University Press, Oxford · Zbl 0990.76001
[54] Talebpour, A.; Mahmassani, H. S., Influence of connected and autonomous vehicles on traffic flow stability and throughput, Transp. Res. Part C: Emerg. Technol., 71, 143-63 (2016)
[55] Treiber, M.; Kesting, A., Traffic flow dynamics (2013), Berlin: Springer Berlin Heidelberg, Berlin
[56] Wagner, P.; Buisson, C.; Nippold, R., Challenges in applying calibration methods to stochastic traffic models, Transp. Res. Rec, 2560, 1, 10-6 (2016)
[57] Wolf-Gladrow, D. A., Lattice-gas cellular automata and lattice Boltzmann models: An introduction. Lecture notes in mathematics, 1725 (2000), New York: Springer, New York · Zbl 0999.82054
[58] Wu, C.; Kreidieh, A.; Vinitsky, E.; Bayen, A. M., Emergent behaviors in mixed-autonomy traffic, Conference on Robot Learning, 398-407 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.