×

Statistical dependence: beyond Pearson’s \(\rho\). (English) Zbl 07474199

Summary: Pearson’s \(\rho\) is the most used measure of statistical dependence. It gives a complete characterization of dependence in the Gaussian case, and it also works well in some non-Gaussian situations. It is well known; however, that it has a number of shortcomings; in particular, for heavy tailed distributions and in nonlinear situations, where it may produce misleading, and even disastrous results. In recent years, a number of alternatives have been proposed. In this paper, we will survey these developments, especially results obtained in the last couple of decades. Among measures discussed are the copula, distribution-based measures, the distance covariance, the HSIC measure popular in machine learning and finally the local Gaussian correlation, which is a local version of Pearson’s \(\rho\). Throughout, we put the emphasis on conceptual developments and a comparison of these. We point out relevant references to technical details as well as comparative empirical and simulated experiments. There is a broad selection of references under each topic treated.

MSC:

62-XX Statistics

References:

[1] Aas, K., Czado, C., Frigessi, A. and Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance Math. Econom. 44 182-198. · Zbl 1165.60009 · doi:10.1016/j.insmatheco.2007.02.001
[2] Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 337-404. · Zbl 0037.20701 · doi:10.2307/1990404
[3] Berentsen, G. D., Kleppe, T. and TjØstheim, D. (2014). Introducing localgauss, an R-package for estimating and visualizing local Gaussian corelation. J. Stat. Softw. 56 1-18.
[4] Berentsen, G. D. and TjØstheim, D. (2014). Recognizing and visualizing departures from independence in bivariate data using local Gaussian correlation. Stat. Comput. 24 785-801. · Zbl 1322.62140 · doi:10.1007/s11222-013-9402-8
[5] Berentsen, G. D., StØve, B., TjØstheim, D. and NordbØ, T. (2014). Recognizing and visualizing copulas: An approach using local Gaussian approximation. Insurance Math. Econom. 57 90-103. · Zbl 1304.62085 · doi:10.1016/j.insmatheco.2014.04.005
[6] Bergsma, W. and Dassios, A. (2014). A consistent test of independence based on a sign covariance related to Kendall’s tau. Bernoulli 20 1006-1028. · Zbl 1400.62091 · doi:10.3150/13-BEJ514
[7] Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic, Boston, MA. With a preface by Persi Diaconis. · Zbl 1145.62002 · doi:10.1007/978-1-4419-9096-9
[8] Berrett, T. B. and Samworth, R. J. (2019). Nonparametric independence testing via mutual information. Biometrika 106 547-566. · Zbl 1464.62267 · doi:10.1093/biomet/asz024
[9] Bickel, P. J. and Rosenblatt, M. (1973). On some global measures of the deviations of density function estimates. Ann. Statist. 1 1071-1095. · Zbl 0275.62033
[10] Bilodeau, M. and Lafaye de Micheaux, P. (2009). \(A\)-dependence statistics for mutual and serial independence of categorical variables. J. Statist. Plann. Inference 139 2407-2419. · Zbl 1160.62038 · doi:10.1016/j.jspi.2008.11.006
[11] Bilodeau, M. and Nangue, A. G. (2017). Tests of mutual or serial independence of random vectors with applications. J. Mach. Learn. Res. 18 Paper No. 74. · Zbl 1440.62145
[12] Bjerve, S. and Doksum, K. (1993). Correlation curves: Measures of association as functions of covariate values. Ann. Statist. 21 890-902. · Zbl 0817.62025 · doi:10.1214/aos/1176349156
[13] Blomqvist, N. (1950). On a measure of dependence between two random variables. Ann. Math. Stat. 21 593-600. · Zbl 0040.22403 · doi:10.1214/aoms/1177729754
[14] Blum, J. R., Kiefer, J. and Rosenblatt, M. (1961). Distribution free tests of independence based on the sample distribution function. Ann. Math. Stat. 32 485-498. · Zbl 0139.36301 · doi:10.1214/aoms/1177705055
[15] Böttcher, B., Keller-Ressel, M. and Schilling, R. L. (2019). Distance multivariance: New dependence measures for random vectors. Ann. Statist. 47 2757-2789. · Zbl 1467.62104 · doi:10.1214/18-AOS1764
[16] Brock, W. A., Scheinkman, J. A., Dechert, W. D. and LeBaron, B. (1996). A test for independence based on the correlation dimension. Econometric Rev. 15 197-235. · Zbl 0893.62034 · doi:10.1080/07474939608800353
[17] Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 299-318. · Zbl 0157.25802
[18] Csörgő, S. (1985). Testing for independence by the empirical characteristic function. J. Multivariate Anal. 16 290-299. · Zbl 0585.62097 · doi:10.1016/0047-259X(85)90022-3
[19] Datastream (2018). Subscription service. Accessed June 2018.
[20] Davis, R. A., Matsui, M., Mikosch, T. and Wan, P. (2018). Applications of distance correlation to time series. Bernoulli 24 3087-3116. · Zbl 1414.62357 · doi:10.3150/17-BEJ955
[21] Deheuvels, P. (1981a). A Kolmogorov-Smirnov type test for independence and multivariate samples. Rev. Roumaine Math. Pures Appl. 26 213-226. · Zbl 0477.62030
[22] Deheuvels, P. (1981b). An asymptotic decomposition for multivariate distribution-free tests of independence. J. Multivariate Anal. 11 102-113. · Zbl 0486.62043 · doi:10.1016/0047-259X(81)90136-6
[23] Dueck, J., Edelmann, D., Gneiting, T. and Richards, D. (2014). The affinely invariant distance correlation. Bernoulli 20 2305-2330. · Zbl 1320.62133 · doi:10.3150/13-BEJ558
[24] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 987-1007. · Zbl 0491.62099 · doi:10.2307/1912773
[25] Escanciano, J. C. and Hualde, J. (2019). Measuring asset market linkages: Nonlinear dependence and tail risk. J. Bus. Econom. Statist. 1-25.
[26] Escanciano, J. C. and Velasco, C. (2006). Generalized spectral tests for the martingale difference hypothesis. J. Econometrics 134 151-185. · Zbl 1418.62320 · doi:10.1016/j.jeconom.2005.06.019
[27] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer Series in Statistics. Springer, New York. · Zbl 1119.62046
[28] Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population. Biometrika 10 507-521.
[29] Fisher, R. A. (1921). On the probable error of a coefficient of correlation deduced from a small sample. Metron 1 3-32.
[30] Fokianos, K. and Pitsillou, M. (2017). Consistent testing for pairwise dependence in time series. Technometrics 59 262-270. · doi:10.1080/00401706.2016.1156024
[31] Forbes, K. J. and Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. J. Finance 57 2223-2261.
[32] Francq, C. and Zakoïan, J.-M. (2011). GARCH Models: Structure, Statistical Inference and Financial Applications. Wiley, Chichester. · doi:10.1002/9780470670057
[33] Galton, F. (1888). Co-relations and their measurement, chiefly from anthropometric data. Proc. Roy. Soc. Lond. 45 135-145.
[34] Galton, F. (1890). Kinship and correlation. N. Amer. Rev. 150 419-431.
[35] Gebelein, H. (1941). Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung. ZAMM Z. Angew. Math. Mech. 21 364-379. · Zbl 0026.33402 · doi:10.1002/zamm.19410210604
[36] Genest, C., Ghoudi, K. and Rémillard, B. (2007). Rank-based extensions of the Brock, Dechert, and Scheinkman test. J. Amer. Statist. Assoc. 102 1363-1376. · Zbl 1332.62298 · doi:10.1198/016214507000001076
[37] Genest, C. and Nešlehová, J. (2007). A primer on copulas for count data. Astin Bull. 37 475-515. · Zbl 1274.62398 · doi:10.2143/AST.37.2.2024077
[38] Genest, C., Kojadinovic, I., Nešlehová, J. and Yan, J. (2011). A goodness-of-fit test for bivariate extreme-value copulas. Bernoulli 17 253-275. · Zbl 1284.62331 · doi:10.3150/10-BEJ279
[39] Ghoudi, K. and Rémillard, B. (2018). Serial independence tests for innovations of conditional mean and variance models. TEST 27 3-26. · Zbl 1390.60085 · doi:10.1007/s11749-016-0521-3
[40] Gómez, E., Gómez-Villegas, M. A. and Marín, J. M. (2003). A survey on continuous elliptical vector distributions. Rev. Mat. Complut. 16 345-361. · Zbl 1041.60016 · doi:10.5209/rev_REMA.2003.v16.n1.16889
[41] Gorfine, M., Heller, R. and Heller, Y. (2012). Comment on “Detecting novel associations in large data sets” by Reshef et al., Science Dec 16, 2011.
[42] Granger, C. W., Maasoumi, E. and Racine, J. (2004). A dependence metric for possibly nonlinear processes. J. Time Series Anal. 25 649-669. · Zbl 1062.62178 · doi:10.1111/j.1467-9892.2004.01866.x
[43] Gretton, A. (2019). Introduction to RKHS, and some simple kernel algorithms. Unpublished manuscript, Lecture Notes Gatsby Computational Neuroscience Unit.
[44] Gretton, A. and Györfi, L. (2010). Consistent nonparametric tests of independence. J. Mach. Learn. Res. 11 1391-1423. · Zbl 1242.62033
[45] Gretton, A. and Györfi, L. (2012). Strongly consistent nonparametric test of conditional independence. J. Multivariate Anal. 82 1145-1150. · Zbl 1239.62050
[46] Gretton, A., Bousquet, O., Smola, A. and Schölkopf, B. (2005). Measuring statistical dependence with Hilbert-Schmidt norms. In Algorithmic Learning Theory (S. Jain, U. Simon and E. Tomita, eds.). Lecture Notes in Computer Science 3734 63-77. Springer, Berlin. · Zbl 1168.62354 · doi:10.1007/11564089_7
[47] Heller, R., Heller, Y. and Gorfine, M. (2013). A consistent multivariate test of association based on ranks of distances. Biometrika 100 503-510. · Zbl 1284.62332 · doi:10.1093/biomet/ass070
[48] Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation. Ann. Statist. 24 1619-1647. · Zbl 0867.62030 · doi:10.1214/aos/1032298288
[49] Hoeffding, W. (1948). A non-parametric test of independence. Ann. Math. Stat. 19 546-557. · Zbl 0032.42001 · doi:10.1214/aoms/1177730150
[50] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30. · Zbl 0127.10602
[51] Höffding, W. (1940). Maszstabinvariante Korrelationstheorie. Schr. Math. Inst. U. Inst. Angew. Math. Univ. Berlin 5 181-233. · Zbl 0024.05602
[52] Holland, P. W. and Wang, Y. J. (1987). Dependence function for continuous bivariate densities. Comm. Statist. Theory Methods 16 863-876. · Zbl 0609.62092 · doi:10.1080/03610928708829408
[53] Hong, Y. (1999). Hypothesis testing in time series via the empirical characteristic function: A generalized spectral density approach. J. Amer. Statist. Assoc. 94 1201-1220. · Zbl 1072.62632 · doi:10.2307/2669935
[54] Hong, Y. (2000). Generalized spectral tests for serial dependence. J. R. Stat. Soc. Ser. B. Stat. Methodol. 62 557-574. · Zbl 0963.62043 · doi:10.1111/1467-9868.00250
[55] Hong, Y. and White, H. (2005). Asymptotic distribution theory for nonparametric entropy measures of serial dependence. Econometrica 73 837-901. · Zbl 1152.91729 · doi:10.1111/j.1468-0262.2005.00597.x
[56] Huang, T.-M. (2010). Testing conditional independence using maximal nonlinear conditional correlation. Ann. Statist. 38 2047-2091. · Zbl 1202.62078 · doi:10.1214/09-AOS770
[57] Inci, A. C., Li, H.-C. and McCarthy, J. (2011). Financial contagion: A local correlation analysis. Res. Int. Bus. Finance 25 11-25.
[58] Jentsch, C., Leucht, A., Meyer, M. and Beering, C. (2020). Empirical characteristic functions-based estimation and distance correlation for locally stationary processes. J. Time Series Anal. 41 110-133. · Zbl 1445.62057 · doi:10.1111/jtsa.12497
[59] Joe, H. (2014). Dependence Modeling with Copulas. Chapman & Hall, London. · Zbl 1346.62001
[60] Jones, M. C. (1996). The local dependence function. Biometrika 83 899-904. · Zbl 0883.62057 · doi:10.1093/biomet/83.4.899
[61] Jones, M. C. and Koch, I. (2003). Dependence maps: Local dependence in practice. Stat. Comput. 13 241-255. · doi:10.1023/A:1024270700807
[62] Jordanger, L. A. (2020). LocalgaussSpec. Available at https://github.com/LAJordanger/localgaussSpec.
[63] Jordanger, L. A. and TjØstheim, D. (2020). Nonlinear spectral analysis: A local Gaussian approach. J. Amer. Statist. Assoc. 1-55.
[64] Kendall, M. G. (1938). A new measure of rank correlation. Biometrika 30 81-89. · Zbl 0019.13001
[65] King, M. L. (1987). Testing for autocorrelation in linear regression models: A survey. In Specification Analysis in the Linear Model (M. L. King and D. E. A. Giles, eds.). Internat. Lib. Econom. 19-73. Routledge, London.
[66] Kinney, J. B. and Atwal, G. S. (2014). Equitability, mutual information, and the maximal information coefficient. Proc. Natl. Acad. Sci. USA 111 3354-3359. · Zbl 1359.62213 · doi:10.1073/pnas.1309933111
[67] Klaassen, C. A. J. and Wellner, J. A. (1997). Efficient estimation in the bivariate normal copula model: Normal margins are least favourable. Bernoulli 3 55-77. · Zbl 0877.62055 · doi:10.2307/3318652
[68] Kojadinovic, I. and Holmes, M. (2009). Tests of independence among continuous random vectors based on Cramér-von Mises functionals of the empirical copula process. J. Multivariate Anal. 100 1137-1154. · Zbl 1159.62033 · doi:10.1016/j.jmva.2008.10.013
[69] Kraskov, A., Stögbauer, H. and Grassberger, P. (2004). Estimating mutual information. Phys. Rev. E (3) 69 066138. · doi:10.1103/PhysRevE.69.066138
[70] Lacal, V. and TjØstheim, D. (2017). Local Gaussian autocorrelation and tests for serial independence. J. Time Series Anal. 38 51-71. · Zbl 1356.62145 · doi:10.1111/jtsa.12195
[71] Lacal, V. and TjØstheim, D. (2019). Estimating and testing nonlinear local dependence between two time series. J. Bus. Econom. Statist. 37 648-660. · doi:10.1080/07350015.2017.1407777
[72] Lancaster, H. O. (1957). Some properties of the bivariate normal distribution considered in the form of a contingency table. Biometrika 44 289-292. · Zbl 0082.35105
[73] Lehmann, E. L. (1966). Some concepts of dependence. Ann. Math. Stat. 37 1137-1153. · Zbl 0146.40601 · doi:10.1214/aoms/1177699260
[74] Loader, C. R. (1996). Local likelihood density estimation. Ann. Statist. 24 1602-1618. · Zbl 0867.62034 · doi:10.1214/aos/1032298287
[75] Markowitz, H. M. (1952). Portfolio selection. J. Finance 7 77-91.
[76] Muscat, J. (2014). Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras. Springer, Cham. · Zbl 1312.46002 · doi:10.1007/978-3-319-06728-5
[77] Nelsen, R. B. (1999). An Introduction to Copulas. Lecture Notes in Statistics 139. Springer, New York. · Zbl 0909.62052 · doi:10.1007/978-1-4757-3076-0
[78] Nguyen, Q. N., Aboura, S., Chevallier, J., Zhang, L. and Zhu, B. (2020). Local Gaussian correlations in financial and commodity markets. European J. Oper. Res. 285 306-323. · Zbl 1441.62265 · doi:10.1016/j.ejor.2020.01.023
[79] Otneim, H. (2019). \[ \mathtt{lg} \]: Locally gaussian distributions: Estimation and methods. Available at https://CRAN.R-project.org/package=lg.
[80] Otneim, H., Jullum, M. and TjØstheim, D. (2020). Pairwise local Fisher and naive Bayes: Improving two standard discriminants. J. Econometrics 216 284-304. · Zbl 1456.62062 · doi:10.1016/j.jeconom.2020.01.019
[81] Otneim, H. and TjØstheim, D. (2017). The locally Gaussian density estimator for multivariate data. Stat. Comput. 27 1595-1616. · Zbl 1384.62128 · doi:10.1007/s11222-016-9706-6
[82] Otneim, H. and TjØstheim, D. (2018). Conditional density estimation using the local Gaussian correlation. Stat. Comput. 28 303-321. · Zbl 1384.62127 · doi:10.1007/s11222-017-9732-z
[83] Otneim, H. and TjØstheim, D. (2021). The locally Gaussian partial correlation. J. Bus. Econom. Statist. 1-33. To appear. · Zbl 1384.62127
[84] Pearson, K. (1896). Mathematical contributions to the theory of evolution. III. Regression, heredity and panmixia. Philos. Trans. R. Soc. Lond. 187 253-318.
[85] Pearson, K. (1922). Francis Galton: A Centenary Appreciation. Cambridge Univ. Press, Cambridge.
[86] Pearson, K. (1930). The Life, Letters and Labors of Francis Galton. Cambridge Univ. Press, Cambridge. · JFM 56.0819.18
[87] Pfister, N. and Peters, J. (2017). dHSIC: Independence testing via Hilbert Schmidt independence criterion. Available at https://CRAN.R-project.org/package=dHSIC.
[88] Pfister, N., Bühlmann, P., Schölkopf, B. and Peters, J. (2018). Kernel-based tests for joint independence. J. R. Stat. Soc. Ser. B. Stat. Methodol. 80 5-31. · Zbl 1381.62105 · doi:10.1111/rssb.12235
[89] Pinkse, J. (1998). A consistent nonparametric test for serial independence. J. Econometrics 84 205-231. · Zbl 0924.62041 · doi:10.1016/S0304-4076(97)00084-5
[90] Prudnikov, A. P., Brychkov, Y. A. and Marichev, O. I. (1986). Integrals and Series. Gordon & Breach, New York.
[91] Rényi, A. (1959). On measures of dependence. Acta Math. Acad. Sci. Hung. 10 441-451. · Zbl 0091.14403 · doi:10.1007/BF02024507
[92] Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M. and Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science 334 1518-1524. · Zbl 1359.62216
[93] Reshef, D., Reshef, Y., Mitzenmacher, M. and Sabeti, P. (2013). Equitability analysis of the maximal information coefficient, with comparisons. · Zbl 1393.62094
[94] Rizzo, M. L. and Szekely, G. J. (2018). Energy: E-statistics: Multivariate inference via the energy of data. Available at https://CRAN.R-project.org/package=energy.
[95] Robinson, P. M. (1991). Consistent nonparametric entropy-based testing. Rev. Econ. Stud. 58 437-453. · Zbl 0719.62055 · doi:10.2307/2298005
[96] Rosenblatt, M. (1975). A quadratic measure of deviation of two-dimensional density estimates and a test of independence. Ann. Statist. 3 1-14. · Zbl 0325.62030
[97] Sejdinovic, D., Sriperumbudur, B., Gretton, A. and Fukumizu, K. (2013). Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Statist. 41 2263-2291. · Zbl 1281.62117 · doi:10.1214/13-AOS1140
[98] Silvapulle, P. and Granger, C. W. J. (2001). Large returns, conditional correlation and portfolio diversification: A value-at-risk approach. Quant. Finance 1 542-551. · Zbl 1405.91573 · doi:10.1088/1469-7688/1/5/306
[99] Skaug, H. J. and TjØstheim, D. (1993a). A nonparametric test of serial independence based on the empirical distribution function. Biometrika 80 591-602. · Zbl 0790.62044 · doi:10.1093/biomet/80.3.591
[100] Skaug, H. J. and TjØstheim, D. (1993b). Nonparametric tests of serial independence. In Developments in Time Series Analysis (T. S. Rao, ed.) 207-229. CRC Press, London. · Zbl 0880.62052
[101] Skaug, H. J. and TjØstheim, D. (1996). Testing for serial independence using measures of distance between densities. In Athens Conference on Applied Probability and Time Series Analysis, Vol. II (P. M. Robinson and M. Rosenblatt, eds.). Lect. Notes Stat. 115 363-377. Springer, New York. · doi:10.1007/978-1-4612-2412-9_27
[102] Sklar, M. (1959). Fonctions de Répartition à N Dimensions et Leurs Marges. Université Paris 8. · Zbl 0100.14202
[103] Spearman, C. (1904). The proof and measurement of association between two things. Am. J. Psychol. 15 72-101.
[104] Stanton, J. M. (2001). Galton, Pearson, and the peas: A brief history of linear regression for statistics instructors. J. Stat. Educ. 9 1-13.
[105] Stigler, S. M. (1989). Francis Galton’s account of the invention of correlation. Statist. Sci. 4 73-79. · Zbl 0955.01506
[106] StØve, B. and TjØstheim, D. (2014). Asymmetric dependence patterns in financial returns: An empirical investigation using local Gaussian correlation. In Essays in Nonlinear Time Series Econometrics (M. Meitz N. Haldrup and P. Saikkonen, eds.) 307-329. Oxford Univ. Press, Oxford. · doi:10.1093/acprof:oso/9780199679959.003.0013
[107] StØve, B. TjØstheim, D. and Hufthammer, K. (2014). Using local Gaussian correlation in a nonlinear re-examination of financial contagion. J. Empir. Finance 25 785-801.
[108] Su, L. and White, H. (2007). A consistent characteristic function-based test for conditional independence. J. Econometrics 141 807-834. · Zbl 1418.62201 · doi:10.1016/j.jeconom.2006.11.006
[109] Székely, G. J. (2002). \[ \mathcal{E} \]-statistics: The energy of statistical samples. Technical report 02-16, Bowling Green State Univ., Bowling Green, OH.
[110] Székely, G. J. and Rizzo, M. L. (2005). Hierarchical clustering via joint between-within distances: Extending Ward’s minimum variance method. J. Classification 22 151-183. · Zbl 1336.62192 · doi:10.1007/s00357-005-0012-9
[111] Székely, G. J. and Rizzo, M. L. (2009). Brownian distance covariance. Ann. Appl. Stat. 3 1236-1265. · Zbl 1196.62077 · doi:10.1214/09-AOAS312
[112] Székely, G. J. and Rizzo, M. L. (2013). Energy statistics: A class of statistics based on distances. J. Statist. Plann. Inference 143 1249-1272. · Zbl 1278.62072 · doi:10.1016/j.jspi.2013.03.018
[113] Székely, G. J. and Rizzo, M. L. (2014). Partial distance correlation with methods for dissimilarities. Ann. Statist. 42 2382-2412. · Zbl 1309.62105 · doi:10.1214/14-AOS1255
[114] Székely, G. J., Rizzo, M. L. and Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. Ann. Statist. 35 2769-2794. · Zbl 1129.62059 · doi:10.1214/009053607000000505
[115] Taleb, N. N. (2007). The Black Swan: The Impact of the Highly Improbable. Random House, New York.
[116] Teräsvirta, T., TjØstheim, D. and Granger, C. W. J. (2010). Modelling Nonlinear Economic Time Series. Advanced Texts in Econometrics. Oxford Univ. Press, Oxford. · Zbl 1305.62010 · doi:10.1093/acprof:oso/9780199587148.001.0001
[117] TjØstheim, D. and Hufthammer, K. O. (2013). Local Gaussian correlation: A new measure of dependence. J. Econometrics 172 33-48. · Zbl 1443.62288 · doi:10.1016/j.jeconom.2012.08.001
[118] TjØstheim, D., Otneim, H. and StØve, B. (2021). Statistical Modeling Using Local Gaussian Approximation. Elsevier, Amsterdam. To appear. · Zbl 1504.62011
[119] TjØstheim, D., Otneim, H. and StØve, B. (2022). Supplement to “Statistical Dependence: Beyond Pearson’s \(ρ\).” https://doi.org/10.1214/21-STS823SUPP · Zbl 1504.62011
[120] von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Stat. 12 367-395. · Zbl 0060.29911 · doi:10.1214/aoms/1177731677
[121] von Neumann, J. (1942). A further remark concerning the distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Stat. 13 86-88. · Zbl 0060.29912 · doi:10.1214/aoms/1177731645
[122] Yao, S., Zhang, X. and Shao, X. (2018). Testing mutual independence in high dimension via distance covariance. J. R. Stat. Soc. Ser. B. Stat. Methodol. 80 455-480. · Zbl 1398.62151 · doi:10.1111/rssb.12259
[123] Yenigün, C. D., Székely, G. J. and Rizzo, M. L. (2011). A test of independence in two-way contingency tables based on maximal correlation. Comm. Statist. Theory Methods 40 2225-2242. · Zbl 1216.62097 · doi:10.1080/03610921003764274
[124] Zhang, K., Peters, J., Janzing, D. and Schölkopf, B. (2012). Kernel-based conditional independence test and applications in causal discovery. In Proceedings of the Uncertainty in Artificial Intelligence 804-813. AUAI Press, Corvallis, OR.
[125] Zhang, Q., Filippi, S., Gretton, A. and Sejdinovic, D. (2018). Large-scale kernel methods for independence testing. Stat. Comput. 28 113-130. · Zbl 1384.62154 · doi:10.1007/s11222-016-9721-7
[126] Zhou, Z. (2012). Measuring nonlinear dependence in time-series, a distance correlation approach. J. Time Series Anal. 33 438-457 · Zbl 1301.62095 · doi:10.1111/j.1467-9892.2011.00780.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.