×

The reproducing kernel algorithm for numerical solution of Van der Pol damping model in view of the Atangana-Baleanu fractional approach. (English) Zbl 07468592

Summary: The aim of this paper is to propose the Atangana-Baleanu fractional methodology for fathoming the Van der Pol damping model by using the reproducing kernel algorithm. To this end, we discuss the mathematical structure of this new approach and some other numerical properties of solutions. Furthermore, all needed requirements for characterizing solutions by applying the reproducing kernel algorithm are debated. In this orientation, modern trend and new computational algorithm in terms of analytic and approximate Atangana-Baleanu fractional solutions are proposed. Finally, numerical simulations in fractional emotion is constructed one next to the other with tabulated data and graphical portrayals.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Full Text: DOI

References:

[1] Herrmann, R., Fractional Calculus: An Introduction for Physicists (World Scientific, Singapore, 2014). · Zbl 1293.26001
[2] Tarasov, V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Germany, 2011).
[3] West, B. J., Fractional Calculus View of Complexity: Tomorrow’s Science (Taylor & Francis, UK, 2015). · Zbl 1330.00030
[4] Kilbas, A., Srivastava, H. and Trujillo, J., Theory and Applications of Fractional Differential Equations (Elsevier, Netherlands, 2006). · Zbl 1092.45003
[5] West, B. J., Natures Patterns and the Fractional Calculus (De Gruyter, Germany, 2017). · Zbl 1381.34003
[6] Arqub, O. Abu, Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions, Comput. Math. Appl.73 (2017) 1243-1261. · Zbl 1412.65174
[7] Arqub, O. Abu, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Methods Heat Fluid Flow28 (2018) 828-856.
[8] Arqub, O. Abu, Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space, Numer. Methods Partial Differ. Eq.34 (2018) 1759-1780. · Zbl 1407.65153
[9] Ray, S. S., New exact solutions of nonlinear fractional acoustic wave equations in ultrasound, Comput. Math. Appl.71 (2016) 859-868. · Zbl 1359.35218
[10] Ray, S. S. and Sahoo, S., Analytical approximate solutions of Riesz fractional diffusion equation and Riesz fractional advection-dispersion equation involving nonlocal space fractional derivatives, Math. Methods Appl. Sci.38 (2015) 2840-2849. · Zbl 1334.35396
[11] Meerschaert, M. M. and Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math.172 (2004) 65-77. · Zbl 1126.76346
[12] Zhuang, P., Liu, F., Anh, V. and Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal.47 (2009) 1760-1781. · Zbl 1204.26013
[13] Atilgan, E., Senol, M., Kurt, A. and Tasbozan, O., New wave solutions of time-fractional coupled Boussinesq-Whitham-Broer-Kaup equation as a model of water waves, China Ocean Eng.33 (2019) 477-483.
[14] Atangana, A. and Baleanu, D., New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Sci.20 (2016) 763-769.
[15] Atangana, A. and Nieto, J. J., Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Adv. Mech. Eng.7 (2015) 1-7.
[16] Atangana, A. and Baleanu, D., New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Sci.20 (2016) 763-769.
[17] Atangana, A. and Gómez-Aguilar, J. F., Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus133 (2018) 1-22.
[18] Arqub, O. Abu, Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm, Calcolo55 (2018) 1-28. · Zbl 1402.65068
[19] Arqub, O. Abu and Maayah, B., Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Solitons Fractals125 (2019) 163-170. · Zbl 1448.65081
[20] Arqub, O. Abu and Maayah, B., Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator, Chaos Solitons Fractals117 (2018) 117-124. · Zbl 1442.65449
[21] Arqub, O. Abu and Maayah, B., Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-fractional Volterra integro-differential equations, Chaos Solitons Fractals126 (2019) 394-402. · Zbl 1448.65273
[22] Djida, J. D., Atangana, A. and Area, I., Numerical computation of a fractional derivative with non-local and non-singular kernel, Math. Modelling Nat. Phenomena12 (2017) 4-13. · Zbl 1416.65190
[23] Atangana, A. and Gómez-Aguilar, J. F., Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos Solitons Fractals114 (2018) 516-535. · Zbl 1415.34010
[24] Atangana, A., On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Appl. Math. Comput.273 (2016) 948-956. · Zbl 1410.35272
[25] Atangana, A. and Koca, I., On the new fractional derivative and application to Nonlinear Baggs and Freedman model, J. Nonlinear Sci. Appl.9 (2016) 2467-2480. · Zbl 1335.34079
[26] Algahtani, O., Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons Fractals89 (2016) 552-559. · Zbl 1360.35094
[27] Pol, B. Vander, A theory of the amplitude of free and forced triode vibrations, Radio Rev.1 (1920) 701-710.
[28] Jafari, H., Khalique, C. M. and Nazari, M., An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation, Math. Comput. Modelling55 (2012) 1782-1786. · Zbl 1255.65142
[29] Guo, Z., Leung, A. Y. T. and Yang, H. X., Oscillatory region and asymptotic solution of fractional van der Pol oscillator via residue harmonic balance technique, Appl. Math. Modelling35 (2011) 3918-3925. · Zbl 1221.34011
[30] Xu, Y. and Agrawal, O. P., Models and numerical schemes for generalized van der Pol equations, Commun. Nonlinear Sci. Numer. Simul.18 (2013) 3575-3589. · Zbl 1344.65062
[31] Kavyanpoor, M. and Shokrollahi, S., Challenge on solutions of fractional Van Der Pol oscillator by using the differential transform method, Chaos Solitons Fractals98 (2017) 44-45. · Zbl 1372.34103
[32] Cai, S. and Xiao, M., Boundary observability of wave equations with nonlinear van der Pol type boundary conditions, Automatica98 (2018) 350-353. · Zbl 1406.93063
[33] Ray, S. S. and Patra, A., Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory Van der Pol system, Appl. Math. Comput.220 (2013) 659-667. · Zbl 1329.65174
[34] Cui, M. and Lin, Y., Nonlinear Numerical Analysis in the Reproducing Kernel Space (Nova Science, USA, 2009). · Zbl 1165.65300
[35] Berlinet, A. and Agnan, C. T., Reproducing Kernel Hilbert Space in Probability and Statistics (Kluwer Academic Publishers, USA, 2004). · Zbl 1145.62002
[36] Daniel, A., Reproducing Kernel Spaces and Applications (Springer, Basel, 2003). · Zbl 1021.00005
[37] Arqub, O. Abu, Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis, Fund. Inf.166 (2019) 111-137. · Zbl 1435.65182
[38] Jiang, W. and Chen, Z., A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation, Numer. Methods Partial Differ. Eq.30 (2014) 289-300. · Zbl 1285.65065
[39] Geng, F. Z., Qian, S. P. and Li, S., A numerical method for singularly perturbed turning point problems with an interior layer, J. Comput. Appl. Math.255 (2014) 97-105. · Zbl 1291.65231
[40] Lin, Y., Cui, M. and Yang, L., Representation of the exact solution for a kind of nonlinear partial differential equations, Appl. Math. Lett.19 (2006) 808-813. · Zbl 1116.35309
[41] Zhoua, Y., Cui, M. and Lin, Y., Numerical algorithm for parabolic problems with non-classical conditions, J. Comput. Appl. Math.230 (2009) 770-780. · Zbl 1190.65136
[42] Akgül, A., A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fractals114 (2018) 478-482. · Zbl 1415.34007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.