×

Lie symmetry analysis and similarity solutions for the Jimbo-Miwa equation and generalisations. (English) Zbl 07446870

Summary: We study the Jimbo-Miwa equation and two of its extended forms, as proposed by Wazwaz et al., using Lie’s group approach. Interestingly, the travelling-wave solutions for all the three equations are similar. Moreover, we obtain certain new reductions which are completely different for each of the three equations. For example, for one of the extended forms of the Jimbo-Miwa equation, the subsequent reductions leads to a second-order equation with Hypergeometric solutions. In certain reductions, we obtain simpler first-order and linearisable second-order equations, which helps us to construct the analytic solution as a closed-form function. The variation in the nonzero Lie brackets for each of the different forms of the Jimbo-Miwa also presents a different perspective. Finally, singularity analysis is applied in order to determine the integrability of the reduced equations and of the different forms of the Jimbo-Miwa equation.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34C14 Symmetries, invariants of ordinary differential equations
22E60 Lie algebras of Lie groups
35B06 Symmetries, invariants, etc. in context of PDEs
35C05 Solutions to PDEs in closed form
35C07 Traveling wave solutions

References:

[1] M. Jimbo and T. Miwa, “Solitons and infinite dimensional Lie algebras,” Publ. Res. Inst. Math. Sci., vol. 19, no. 3, pp. 943-1001, 1983. doi:10.2977/prims/1195182017. · Zbl 0557.35091 · doi:10.2977/prims/1195182017
[2] B. Dorizzi, B. Grammaticos, A. Ramani and P. Winternitz, “Are all the equations of the Kadomtsev - Petviashvili hierarchy integrable?” J. Math. Phys., vol. 27, no. 12, pp. 2848-2852, 1986. doi:10.1063/1.527260. · Zbl 0619.35086 · doi:10.1063/1.527260
[3] D. Wang, W. Sun, C. Kong, and H. Zhang, “New extended rational expansion method and exact solutions of Boussinesq equation and Jimbo-Miwa equations,” Appl. Math. Comput., vol. 189, no. 1, pp. 878-886, 2007. doi:10.1016/j.amc.2006.11.142. · Zbl 1122.65396 · doi:10.1016/j.amc.2006.11.142
[4] A. M. Wazwaz, “Multiple-soliton solutions for extended (3+1) -dimensional Jimbo-Miwa equations,” Appl. Math. Lett., vol. 64, pp. 21-26, 2017. doi:10.1016/j.aml.2016.08.005. · Zbl 1353.65109 · doi:10.1016/j.aml.2016.08.005
[5] A. M. Wazwaz, “Multiple-soliton solutions for the Calogero -Bogoyavlenskii- Schiff, Jimbo- Miwa and YTSF equations,” Appl. Math. Comput., vol. 203, no. 2, pp. 592-597, 2008. doi:10.1016/j.amc.2008.05.004. · Zbl 1154.65366 · doi:10.1016/j.amc.2008.05.004
[6] B. Cao, “Solutions of jimbo-miwa equation and konopelchenko-dubrovsky equations,” Acta Appl. Math., vol. 112, no. 2, pp. 181-203, 2010. doi:10.1007/s10440-009-9559-5. · Zbl 1198.35206 · doi:10.1007/s10440-009-9559-5
[7] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, New York, Springer-Verlag, 1989. · Zbl 0698.35001
[8] N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws, Florida, CRS Press LLC, 2000.
[9] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1993. · Zbl 0785.58003
[10] S. Jamal and A. Paliathanasis, “Group invariant transformations for the Klein - Gordon equation in three dimensional flat spaces,” J. Geom. Phys., vol. 117, pp. 50-59, 2017. doi:10.1016/j.geomphys.2017.03.003. · Zbl 1367.35172 · doi:10.1016/j.geomphys.2017.03.003
[11] N. Kallinikos and E. Meletlidou, “Symmetries of charged particle motion under time-independent electromagnetic fields,” J. Phys. Math. Theor., vol. 46, no. 30, p. 305202, 2013. doi:10.1088/1751-8113/46/30/305202. · Zbl 1281.78009 · doi:10.1088/1751-8113/46/30/305202
[12] P. G. L. Leach, “Symmetry and singularity properties of the generalised Kummer - Schwarz and related equations,” J. Math. Anal. Appl., vol. 348, no. 1, pp. 487-493, 2008. doi:10.1016/j.jmaa.2008.07.018. · Zbl 1157.34030 · doi:10.1016/j.jmaa.2008.07.018
[13] S. V. Meleshko and V. P. Shapeev, “Nonisentropic solutions of simple wave type of the gas dynamics equations,” J. Nonlinear Math. Phys., vol. 18, no. Sup1, pp. 195-212, 2011. doi:10.1142/s1402925111001374. · Zbl 1362.76047 · doi:10.1142/s1402925111001374
[14] M. C. Nucci and G. Sanchini, “Symmetries, Lagrangians and conservation laws of an Easter Island population model,” Symmetry, vol. 7, no. 3, pp. 1613-1632, 2015. doi:10.3390/sym7031613. · Zbl 1375.37148 · doi:10.3390/sym7031613
[15] A. Paliathanasis, K. Krishnakumar, K. M. Tamizhmani, and P. G. L. Leach, “Lie symmetry analysis of the Black-Scholes-Merton Model for European options with stochastic volatility,” Mathematics, vol. 4, no. 2, p. 28, 2016. doi:10.3390/math4020028. · Zbl 1358.91101 · doi:10.3390/math4020028
[16] G. M. Webb, “Lie symmetries of a coupled nonlinear Burgers-heat equation system,” J. Phys. Math. Gen., vol. 23, no. 17, p. 3885, 1990. doi:10.1088/0305-4470/23/17/018. · Zbl 0726.35116 · doi:10.1088/0305-4470/23/17/018
[17] G. M. Webb and G. P. Zank, “Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics,” J. Phys. Math. Theor., vol. 40, no. 3, p. 545, 2006. doi:10.1088/1751-8113/40/3/013. · Zbl 1195.76441 · doi:10.1088/1751-8113/40/3/013
[18] X. Xin, Y. Liu, and X. Liu, “Nonlocal symmetries, exact solutions and conservation laws of the coupled Hirota equations,” Appl. Math. Lett., vol. 55, pp. 63-71, 2016. doi:10.1016/j.aml.2015.11.009. · Zbl 1336.35029 · doi:10.1016/j.aml.2015.11.009
[19] S. Dimas and D. Tsoubelis, “SYM: A new symmetry - finding package for Mathematica,” in Proceedings of the 10th International Conference in Modern Group Analysis, 2004, pp. 64-70.
[20] S. Dimas and D. Tsoubelis, “A new Mathematica - based program for solving overdetermined systems of PDEs,” in 8th International Mathematica Symposium, Avignon, 2006.
[21] S. Dimas, Partial Differential Equations, Algebraic Computing and Nonlinear Systems, Ph. D. thesis, Greece, University of Patras, 2008.
[22] S. Kowalevski, “Sur la problème de la rotation d’un corps solide autour d’un point fixe,” Acta Math., vol. 12, pp. 177-232, 1889. doi:10.1007/bf02592182. · JFM 21.0935.01 · doi:10.1007/bf02592182
[23] E. L. Ince, Ordinary Differential Equations, London, Longmans, Green & Co, 1927. · JFM 53.0399.07
[24] A. Ramani, B. Grammaticos, and T. Bountis, “The Painlevé property and singularity analysis of integrable and nonintegrable systems,” Phys. Rep., vol. 180, no. 3, pp. 159-245, 1989. doi:10.1016/0370-1573(89)90024-0. · doi:10.1016/0370-1573(89)90024-0
[25] M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction, New York, John Wiley, 1989. · Zbl 0682.58003
[26] M. J. Ablowitz, A. Ramani, and H. Segur, “Nonlinear evolution equations and ordinary differential equations of Painlevé type,” Lett. Nuovo Cimento, vol. 23, pp. 333-337, 1978. doi:10.1007/bf02824479. · doi:10.1007/bf02824479
[27] M. J. Ablowitz, A. Ramani, and H. Segur, “A connection between nonlinear evolution equations and ordinary differential equations of P type I,” J. Math. Phys., vol. 21, pp. 715-721, 1980. doi:10.1063/1.524491. · Zbl 0445.35056 · doi:10.1063/1.524491
[28] M. J. Ablowitz, A. Ramani, and H. Segur, “A connection between nonlinear evolution equations and ordinary differential equations of P type II,” J. Math. Phys., vol. 21, pp. 1006-1015, 1980. doi:10.1063/1.524548. · Zbl 0445.35057 · doi:10.1063/1.524548
[29] J. Weiss, M. Tabor, and G. Carnevale, “The Painlevé property for partial differential equations,” J. Math. Phys., vol. 24, pp. 522-526, 1983. doi:10.1063/1.525721. · Zbl 0514.35083 · doi:10.1063/1.525721
[30] J. Weiss, “The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative,” J. Math. Phys., vol. 24, pp. 1405-1413, 1983. doi:10.1063/1.525875. · Zbl 0531.35069 · doi:10.1063/1.525875
[31] J. Weiss, “On classes of integrable systems and the Painlevé property,” J. Math. Phys., vol. 25, pp. 13-24, 1984. doi:10.1063/1.526009. · Zbl 0565.35094 · doi:10.1063/1.526009
[32] J. Weiss, “Bäcklund transformation and linearizations of the Hénon-Heilles system,” Phys. Lett. A, vol. 102, no. 8, pp. 329-331, 1984. doi:10.1016/0375-9601(84)90289-5. · doi:10.1016/0375-9601(84)90289-5
[33] J. Weiss, “The sine-Gordon equations: Complete and partial integrability,” J. Math. Phys., vol. 25, pp. 2226-2235, 1984. doi:10.1063/1.526415. · Zbl 0557.35107 · doi:10.1063/1.526415
[34] J. Weiss, “The Painlevé property and Bäcklund transformations for the sequence of Boussinesq equations,” J. Math. Phys., vol. 26, pp. 258-269, 1985. doi:10.1063/1.526655. · Zbl 0565.35103 · doi:10.1063/1.526655
[35] J. Weiss, “Modified equations, rational solutions, and the Painlevé property for the Kadomtsev-Petviashvili and Hirota-Satsuma equations,” J. Math. Phys., vol. 26, pp. 2174-2180, 1985. doi:10.1063/1.526841. · Zbl 0588.35020 · doi:10.1063/1.526841
[36] K. Andriopoulos and P. G. L. Leach, “The occurrence of a triple-1 resonance in the standard singularity,” Nuovo Cimento della Soc. Italiana di Fisica. B. Gen. Phys. Relat. Astronomy Math. Phys. Method., vol. 124, no. 1, pp. 1-11, 2009.
[37] K. Andriopoulos and P. G. L. Leach, “Singularity analysis for autonomous and nonautonomous differential equations,” Appl. Anal. Discrete Math., vol. 5, pp. 230-239, 2011. ISSN 1452-8630. Available online at http://pefmath.etf.rs. doi:10.2298/AADM110715016A. · Zbl 1289.34002 · doi:10.2298/AADM110715016A
[38] A. Paliathanasis and P. G. L. Leach, “Nonlinear ordinary differential equations: a discussion on symmetries and singularities,” Int. J. Geomet. Methods Mod. Phys., vol. 13, no. 7, 2016, Art no. 1630009. doi:10.1142/s0219887816300099. · Zbl 1387.34049 · doi:10.1142/s0219887816300099
[39] K. Andriopoulos and P. G. L. Leach, “An interpretation of the presence of both positive and negative nongeneric resonances in the singularity analysis,” Phys. Lett. A, vol. 359, pp. 199-203, 2006. doi:10.1016/j.physleta.2006.06.026. · doi:10.1016/j.physleta.2006.06.026
[40] K. Andriopoulos and P. G. L. Leach, “Symmetry and singularity properties of second-order ordinary differential equation of Lie’s Type III,” J. Math. Anal. Appl., vol. 328, pp. 860-875, 2007. doi:10.1016/j.jmaa.2006.06.006. · Zbl 1121.34091 · doi:10.1016/j.jmaa.2006.06.006
[41] R. Conte, “Universal invariance properties of Painlevé analysis and Bäcklund transformation in nonlinear partial differential equations,” Phys. Lett. A, vol. 134, no. 2, pp. 100-104, 1988. doi:10.1016/0375-9601(88)90942-5. · doi:10.1016/0375-9601(88)90942-5
[42] R. Conte, “Invariant Painlevé analysis of partial differential equations,” Phys. Lett. A, vol. 140, no. 7-8, pp. 383-390, 1989. doi:10.1016/0375-9601(89)90072-8. · doi:10.1016/0375-9601(89)90072-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.