×

The E-Bayesian and hierarchical Bayesian estimations for the proportional reversed hazard rate model based on record values. (English) Zbl 07192061

Summary: In this paper, E-Bayesian and hierarchical Bayesian estimations of the shape parameter, when the underlying distribution belongs to the proportional reversed hazard rate model, are considered. Maximum likelihood, Bayesian and E-Bayesian estimates of the unknown parameter and reliability function are obtained based on record values. The Bayesian estimates are derived based on squared error and linear-exponential loss functions. It is pointed out that some previously obtained order relations of E-Bayesian estimates are inadequate and these results are improved. The relationship between E-Bayesian and hierarchical Bayesian estimations is obtained under the same loss functions. The comparison of the derived estimates is carried out by using Monte Carlo simulations. A real data set is analysed for an illustration of the findings.

MSC:

62F15 Bayesian inference
62F10 Point estimation
Full Text: DOI

References:

[1] Chandler KN. The distribution and frequency of record values. J R Stat Soc Ser B. 1952;14:220-228. [Google Scholar] · Zbl 0047.38302
[2] Ahsanullah M. Record statistics. New York: Nova Science; 1995. [Google Scholar] · Zbl 0907.62017
[3] Arnold BC, Balakrishnan N, Nagaraja HN. Records. New York: Wiley; 1998. [Crossref], [Google Scholar]
[4] Nevzorov V. Records: mathematical theory. American Mathematical Society; 2001 (Translation of Mathematical Monographs 194). [Google Scholar]
[5] Kızılaslan F, Nadar M. Estimation with the generalized exponential distribution based on record values and inter-record times. J Stat Comput Simul. 2015;85(5):978-999. doi: 10.1080/00949655.2013.856910[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1457.62080
[6] Wang BX, Yu K, Coolen FPA. Interval estimation for proportional reversed hazard family based on lower record values. Statist Probab Lett. 2015;98:115-122. doi: 10.1016/j.spl.2014.12.019[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1308.62198
[7] Asgharzadeh A, Abdi M, Nadarajah S. Interval estimation for Gumbel distribution using climate records. Bull Malays Math Sci Soc. 2016;39:257-270. doi: 10.1007/s40840-015-0185-2[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1331.62172
[8] Lindley DV, Smith AF. Bayes estimation for the linear model. J R Stat Soc Ser B. 1972;34:1-41. [Google Scholar] · Zbl 0246.62050
[9] Han M. The structure of hierarchical prior distribution and its applications. Chin Oper Res Manag Sci. 1997;6(3):31-40. [Google Scholar]
[10] Han M. E-Bayesian estimation of the reliability derived from Binomial distribution. Appl Math Model. 2011;35(5):2419-2424. doi: 10.1016/j.apm.2010.11.051[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1217.62145
[11] Han M. E-Bayesian estimation and hierarchical Bayesian estimation of failure probability. Comm Statist Theory Methods. 2011;40:3303-3314. doi: 10.1080/03610926.2010.498643[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1225.62136
[12] Han M. E-Bayesian estimation of failure probability and its application. Math Comput Model. 2007;45:1272-1279. doi: 10.1016/j.mcm.2006.11.007[Crossref], [Google Scholar] · Zbl 1304.62122
[13] Han M. Estimation of failure probability and its applications in lifetime data analysis. Int J Qual Stat Reliab, Article ID 719534, 2011. [Google Scholar] · Zbl 1234.62134
[14] Han M. E-Bayesian estimation and hierarchical Bayesian estimation of failure rate. Appl Math Model. 2009;33:1915-1922. doi: 10.1016/j.apm.2008.03.019[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1205.90097
[15] Wang J, Li D, Chen D. E-Bayesian estimation and hierarchical Bayesian estimation of the system reliability parameter. Proc Syst Eng. 2012;3:282-289. doi: 10.1016/j.sepro.2011.11.031[Crossref], [Google Scholar]
[16] Yousefzadeh F. E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter based on asymmetric loss function. Comm Statist Theory Methods. 2017;46(1):1-8. doi: 10.1080/03610926.2014.968736[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1360.62035
[17] Han M. The E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter. Comm Statist Theory Methods. 2017;46(4):1606-1620. doi: 10.1080/03610926.2015.1024861[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1360.62098
[18] Han M. The E-Bayesian and hierarchical Bayesian estimations of Pareto distribution parameter under different loss functions. J Stat Comput Simul. 2017;87(3):577-593. doi: 10.1080/00949655.2016.1221408[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 07191957
[19] Jaheen ZF, Okasha HM. E-Bayesian estimation for the Burr type XII model based on type-2 censoring. Appl Math Model. 2011;35:4730-4737. doi: 10.1016/j.apm.2011.03.055[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1228.62007
[20] Okasha H. E-Bayesian estimation of system reliability with Weibull distribution of components based on type-2 censoring. J Adv Res Sci Comput. 2012;4(4):33-45. [Google Scholar]
[21] Okasha HM. E-Bayesian Estimation for the Lomax distribution based on type-II censored data. J Egyptian Math Soc. 2014;22(3):489-495. doi: 10.1016/j.joems.2013.12.009[Crossref], [Google Scholar] · Zbl 1302.62016
[22] Reyad HM, Ahmed SO. E-Bayesian analysis of the Gumbel type-II distribution under type-II censored scheme. Int J Adv Math Sci. 2015;3(2):108-120. [Google Scholar]
[23] Azimi R, Yaghmaei F, Fasihi B. E-Bayesian estimation based on generalized half Logistic progressive type-II censored data. Int J Adv Math Sci. 2013;1(2):56-63. [Google Scholar]
[24] Okasha HM, Wang J. E-Bayesian Estimation for the Geometric model based on record statistics. Appl Math Modell. 2016;40(1):658-670. doi: 10.1016/j.apm.2015.05.004[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1443.62009
[25] Varian HR. A Bayesian approach to real estate assessment. In: Finberg SE, Zellner A, editors, Studies in Bayesian econometrics and statistics in honor of Leonard J. Savege, North-Holland, Amsterdam; 1975. p.195-208. [Google Scholar]
[26] Berger JO. Statistical decision theory and Bayesian analysis. 2nd ed. New York: Springer; 1985. [Crossref], [Google Scholar] · Zbl 0572.62008
[27] Gradshteyn IS, Ryzhik IM. Table of integrals, series and products. 7th ed. Boston: Academic Press; 2007. [Google Scholar] · Zbl 1208.65001
[28] Maswadah M. Conditional confidence interval estimation for the inverse weibull distribution based on censored generalized order statistics. J Stat Comput Simul. 2003;73(12):887-898. doi: 10.1080/0094965031000099140[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1039.62024
[29] Sultan KS. Bayesian estimates based on record values from the inverse Weibull lifetime model. Qual Technol Quant Manag. 2008;5(4):363-374. doi: 10.1080/16843703.2008.11673408[Taylor & Francis Online], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.