×

Weyl solutions and \(j\)-selfadjointness for Dirac operators. (English) Zbl 07113592

Summary: We consider a non-selfadjoint Dirac-type differential expression \[D(Q) y : = J_n \frac{d y}{d x} + Q(x) y,\] with a non-selfadjoint potential matrix \(Q \in L_{\operatorname{loc}}^1(\mathcal{I}, \mathbb{C}^{n \times n})\) and a signature matrix \(J_n = - J_n^{- 1} = - J_n^\ast \in \mathbb{C}^{n \times n}\). Here, \(\mathcal{I}\) denotes either the line \(\mathbb{R}\) or the half-line \(\mathbb{R}_+\). With this differential expression one associates in \(L^2(\mathcal{I}, \mathbb{C}^n)\) the (closed) maximal and minimal operators \(D_{\max}(Q)\) and \(D_{\min}(Q)\), respectively. One of our main results for the whole line case states that \(D_{\max}(Q) = D_{\min}(Q)\) in \(L^2(\mathbb{R}, \mathbb{C}^n)\). Moreover, we show that, if the minimal operator \(D_{\min}(Q)\) in \(L^2(\mathbb{R}, \mathbb{C}^n)\) is \(j\)-symmetric with respect to an appropriate involution \(j\), then it is \(j\)-selfadjoint. Similar results are valid in the case of the semiaxis \(\mathbb{R}_+\). In particular, we show that, if \(n = 2 p\) and the minimal operator \(D_{\min}^+(Q)\) in \(L^2(\mathbb{R}_+, \mathbb{C}^{2 p})\) is \(j\)-symmetric, then there exists a \(2 p \times p\)-Weyl-type matrix solution \(\Psi(z, \cdot) \in L^2(\mathbb{R}_+, \mathbb{C}^{2 p \times p})\) of the equation \(D_{\max}^+(Q) \Psi(z, \cdot) = z \Psi(z, \cdot)\). A similar result is valid for the expression (0.1) whenever there exists a proper extension \(\tilde{A}\) with \(\dim(\operatorname{dom} \tilde{A} / \operatorname{dom} D_{\min}^+(Q)) = p\) and nonempty resolvent set. In particular, it holds if a potential matrix \(Q\) has a bounded imaginary part. This leads to the existence of a unique Weyl function for the expression (0.1). The main results are proven by means of a reduction to the self-adjoint case by using the technique of dual pairs of operators. The differential expression (0.1) is of significance as it appears in the Lax formulation of the vector-valued nonlinear Schrödinger equation.

MSC:

47E05 General theory of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
47B28 Nonselfadjoint operators

References:

[1] Birman, M. Sh.; Solomyak, M. Z., Spectral Theory of Selfadjoint Operators in Hilbert Space (1987), D. Reidel: D. Reidel Dordrecht, Tokyo · Zbl 0653.35075
[2] Brasche, J.; Neidhardt, H.; Weidmann, J., On the point spectrum of selfadjoint extensions, Math. Z., 214, 2, 343-355 (1993) · Zbl 0791.47005
[3] Brown, B. M.; Grubb, G.; Wood, I., \(M\)-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary value problems, Math. Nachr., 3, 314-347 (2009) · Zbl 1167.47057
[4] Brown, B. M.; Hinchcliffe, J.; Marletta, M.; Naboko, S.; Wood, I., The abstract Titchmarsh-Weyl \(M\)-function for adjoint operator pairs and its relation to the spectrum, Integral Equations Operator Theory, 63, 297-320 (2009) · Zbl 1188.47004
[5] Brown, B. M.; Marletta, M.; Naboko, S.; Wood, I., Boundary triplets and \(M\)-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices, J. Lond. Math. Soc. (2), 77, 700-718 (2008) · Zbl 1148.35053
[6] Cascaval, R.; Gesztesy, F., J-selfadjointness of a class of Dirac-type operators, J. Math. Anal. Appl., 294, 113-121 (2004) · Zbl 1070.47039
[7] Cascaval, R.; Gesztesy, F.; Holden, H.; Latushkin, Y., Spectral analysis of Darboux transformations for the focusing NLS hierarchy, J. Anal. Math., 93, 139-197 (2004) · Zbl 1097.34063
[8] Cherednik, I., Basic Methods of Soliton Theory (1996), World Scientific: World Scientific Singapore · Zbl 0909.35002
[9] Clark, S.; Gesztesy, F., Weyl-Titchmarsh \(M\)-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators, Trans. Amer. Math. Soc., Soc.354, 9, 3475-3534 (2002) · Zbl 1017.34019
[10] Clark, S.; Gesztesy, F., On self-adjoint and \(J\)-self-adjoint Dirac-type operators. A case study, Contemp. Math., 412, 103-140 (2006) · Zbl 1124.34062
[11] Coddington, E. A., Extension theory of formally normal and symmetric subspaces, Mem. Amer. Math. Soc., 134 (1973), 180 p · Zbl 0265.47023
[12] Derkach, V.; Malamud, M., Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., 95, 1-95 (1991) · Zbl 0748.47004
[13] Derkach, V.; Malamud, M., Theory of Extensions of Symmetric Operators and Boundary Value Problems, Proceedings of Institute Math., vol. 104 (2017), Scientific Publisher: NAS of Ukraine, 612 p
[14] Edmunds, D. E.; Evans, W. D., Spectral Theory and Differential Operators (1989), Clarendon Press: Clarendon Press Oxford · Zbl 0664.47014
[15] Fritzsche, B.; Kirstein, B.; Roitberg, I. Ya.; Sakhnovich, A. L., Skew-self-adjoint Dirac system with a rectangular matrix potential: Weyl theory, direct and inverse problems, Integral Equations Operator Theory, 74, 2, 163-187 (2012) · Zbl 1268.34051
[16] Glazman, I. M., Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators (1963), Moscow, English translation by Israel Program for Scientific translations, 1965 · Zbl 0143.36504
[17] Gorbachuk, M. L.; Gorbachuk, V. I., Boundary Value Problems for Operator Differential Equations (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0751.47025
[18] Hassi, S.; Malamud, M.; Mogilevskii, V., Unitary equivalence of proper extensions of a symmetric operator and the Weyl function, Integral Equations Operator Theory, 77, 449-487 (2013) · Zbl 1285.47018
[19] Klaus, M., On the eigenvalues of the Lax operator for the matrix valued AKNS system, Oper. Theory Adv. Appl., 203, 289-323 (2010) · Zbl 1208.34141
[20] Kreĭn, M. G., The theory of selfadjoint extensions of semibounded Hermitian operators and its applications, I, Mat. Sb., 20, 431-495 (1947) · Zbl 0029.14103
[21] Lesch, M.; Malamud, M. M., On the deficiency indices and self-adjointness of symmetric Hamiltonian systems, J. Differential Equations, 189, 556-615 (2003) · Zbl 1016.37026
[22] Levitan, B. M.; Sargsjan, I. S., Sturm-Liouville and Dirac Operators, Mathematics and Its Applications (Soviet Series), vol. 59 (1991), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht
[23] Lyantze, V. E.; Storozh, O. G., Methods of the Theory of Unbounded Operators (1983), Naukova Dumka: Naukova Dumka Kiev, (Russian)
[24] Malamud, M., On some classes of extensions of sectorial operators and dual pairs of contractions, Oper. Theory Adv. Appl., 124, 401-449 (2001) · Zbl 0985.47005
[25] Malamud, M.; Mogilevskii, V., On extensions of dual pairs of operators, Dopov. Nats. Akad. Nauk Ukr., 1, 30-37 (1997) · Zbl 0887.47008
[26] Malamud, M.; Mogilevskii, V., On Weyl functions and \(Q\)-function of dual pairs of linear relations, Dopov. Nats. Akad. Nauk Ukr., 4, 32-37 (1999)
[27] Malamud, M.; Mogilevskii, V., Kreĭn type formula for canonical resolvents of dual pairs of linear relations, Methods Funct. Anal. Topology (4), 8, 72-100 (2002) · Zbl 1074.47501
[28] Möller, M., On the essential spectrum of a class of operators in Hilbert space, Math. Nachr., 194, 185-196 (1998) · Zbl 0919.47004
[29] Race, D., The theory of \(J\)-selfadjoint extensions of \(J\)-symmetric operators, J. Differential Equations, 57, 258-274 (1985) · Zbl 0525.47016
[30] Sakhnovich, A. L.; Sakhnovich, L. A.; Roitberg, I. Y., Inverse Problems and Nonlinear Evolution Equations (2013), De Gruyter: De Gruyter Berlin · Zbl 1283.47003
[31] Vishik, M. I., On general boundary problems for elliptic differential equations, Trans. Moscow Math. Soc.. Trans. Moscow Math. Soc., Amer. Math. Soc. Transl., 24, 107-172 (1963), (Russian), English translation: · Zbl 0131.32301
[32] Zhikhar, N. A., On the theory of \(J\)-symmetric operators, Ukrainian Math. J., 11, 4, 352-365 (1959) · Zbl 0113.31601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.