×

On an estimate in the subspace perturbation problem. (English) Zbl 06919519

Summary: The problem of variation of spectral subspaces for linear self-adjoint operators under an additive bounded perturbation is considered. The aim is to find the best possible upper bound on the norm of the difference of two spectral projections associated with isolated parts of the spectrum of the perturbed and unperturbed operators. A constrained optimization problem on a specific set of parameters is formulated, whose solution yields an estimate of the arcsine of the norm of the difference of the corresponding spectral projections. The solution is computed explicitly. The corresponding result is stronger than the one obtained by Albeverio and Motovilov and, in fact, is the best possible obtainable using their approach.

MSC:

47-XX Operator theory

References:

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, New York, 1993. · Zbl 0874.47001
[2] Albeverio, S.; Motovilov, A. K., Sharpening the norm bound in the subspace perturbation theory, Complex Anal. Oper. Theory, 7, 1389-1416, (2013) · Zbl 1288.47006 · doi:10.1007/s11785-012-0245-7
[3] Brown, L. G., The rectifiable metric on the set of closed subspaces of Hilbert space, Trans. Amer. Math. Soc., 337, 279-289, (1993) · Zbl 0822.46022 · doi:10.1090/S0002-9947-1993-1155349-5
[4] Davis, C., The rotation of eigenvectors by a perturbation, J. Math. Anal. Appl., 6, 159-173, (1963) · Zbl 0115.10403 · doi:10.1016/0022-247X(63)90001-5
[5] Davis, C.; Kahan, W. M., The rotation of eigenvectors by a perturbation. III, SIAM J. Numer. Anal., 7, 1-46, (1970) · Zbl 0198.47201 · doi:10.1137/0707001
[6] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966. · Zbl 0148.12601 · doi:10.1007/978-3-662-12678-3
[7] Kostrykin, V.; Makarov, K. A.; Motovilov, A. K., Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach, 181-198, (2003), Providence, RI · Zbl 1066.47014 · doi:10.1090/conm/327/05814
[8] Kostrykin, V.; Makarov, K. A.; Motovilov, A. K., On a subspace perturbation problem, Proc. Amer. Math. Soc., 131, 3469-3476, (2003) · Zbl 1056.47012 · doi:10.1090/S0002-9939-03-06917-X
[9] Kostrykin, V.; Makarov, K. A.; Motovilov, A. K., Perturbation of spectra and spectral subspaces, Trans. Amer. Math. Soc., 359, 77-89, (2007) · Zbl 1115.47014 · doi:10.1090/S0002-9947-06-03930-4
[10] K. A. Makarov and A. Seelmann, Metric properties of the set of orthogonal projections and their applications to operator perturbation theory, arXiv:1007.1575 [math.SP] (2010).
[11] Makarov, K. A.; Seelmann, A., The length metric on the set of orthogonal projections and new estimates in the subspace perturbation problem, J. Reine Angew. Math., 708, 1-15, (2015) · Zbl 1326.47011 · doi:10.1515/crelle-2013-0099
[12] Seelmann, A., Notes on the sin 2 theorem, Integral Equations Operator Theory, 79, 579-597, (2014) · Zbl 1298.47022 · doi:10.1007/s00020-014-2127-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.