×

On invariant graph subspaces of a \(J\)-self-adjoint operator in the Feshbach case. (English) Zbl 06701370

Summary: We consider a \(J\)-self-adjoint \(2\times2\) block operator matrix \(L\) in the Feshbach spectral case, that is, in the case where the spectrum of one main-diagonal entry of \(L\) is embedded into the absolutely continuous spectrum of the other main-diagonal entry. We work with the analytic continuation of the Schur complement of amain-diagonal entry in \(L-z\) to the unphysical sheets of the spectral parameter \(z\) plane. We present conditions under which the continued Schur complement has operator roots in the sense of Markus-Matsaev. The operator roots reproduce (parts of) the spectrum of the Schur complement, including the resonances. We, then discuss the case where there are no resonances and the associated Riccati equations have bounded solutions allowing the graph representations for the corresponding \(J\)-orthogonal invariant subspaces of \(L\). The presentation ends with an explicitly solvable example.

MSC:

47-XX Operator theory

References:

[1] V. M. Adamjan and H. Langer, “Spectral properties of a class of operator-valued functions,” J. Oper. Theory 33, 259-277 (1995). · Zbl 0841.47010
[2] S. Albeverio, K. A. Makarov, and A. K. Motovilov, “Graph subspaces and the spectral shift function,” Canad. J. Math. 55, 449-503 (2003). · Zbl 1074.47007 · doi:10.4153/CJM-2003-020-7
[3] S. Albeverio and A. K. Motovilov, “Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations,” Trans. Moscow Math. Soc. 72, 45-77 (2011). · Zbl 1250.47021 · doi:10.1090/S0077-1554-2012-00195-2
[4] S. Albeverio, A. K. Motovilov, and A. A. Shkalikov, “Bounds on variation of spectral subspaces under J-self-adjoint perturbations,” Integr. Eq. Oper. Theory 64, 455-486 (2009). · Zbl 1197.47024 · doi:10.1007/s00020-009-1702-1
[5] S. Albeverio, A. K. Motovilov, and C. Tretter, “Bounds on the spectrum and reducing subspaces of a J-self-adjoint operator,” Indiana Univ. Math. J. 59, 1737-1776 (2010). · Zbl 1236.47032 · doi:10.1512/iumj.2010.59.4225
[6] T. Y. Azizov, J. Behrndt, P. Jonas, and C. Trunk, “Spectral points of definite type and type p for linear operators and relations in Krein spaces,” J. Lond. Math. Soc. 83), 768-788 (2011). · Zbl 1220.47052 · doi:10.1112/jlms/jdq098
[7] T. Y. Azizov and I. S. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric (John Wiley & Sons, Chichester, 1989). · Zbl 0714.47028
[8] M. S. Birman and M. Z. Solomjak, Spectral Theory of Selfadjoint Operators in Hilbert Space (Reidel, Dordrecht, 1987).
[9] J. Bognár, Indefinite Inner Product Spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1974). · Zbl 0286.46028 · doi:10.1007/978-3-642-65567-8
[10] K. O. Friedrichs, “On the perturbation of continuous spectra,” Comm. Pure Appl. Math. 1, 361-406 (1948). · Zbl 0031.31204 · doi:10.1002/cpa.3160010404
[11] V. Hardt, R. Mennicken, and A. K. Motovilov, “Factorization theorem for the transfer function associated with a 2 × 2 operator matrix having unbounded couplings,” J. Oper. Theory 48, 187-226 (2002). · Zbl 1019.47016
[12] V. Hardt, R. Mennicken, and A. K. Motovilov, “Factorization theorem for the transfer function associated with an unbounded non-self-adjoint 2×2 operator matrix,” Oper. Theory: Adv. Appl. 142, 117-132 (2003). · Zbl 1057.47013
[13] T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, New York, 1966). · Zbl 0148.12601 · doi:10.1007/978-3-662-12678-3
[14] H. Langer, “Spectral functions of definitizable operators in Krein spaces,” Lect. Notes Math. 948, 1-46 (1982). · Zbl 0511.47023 · doi:10.1007/BFb0069840
[15] A. S. Markus and V. I. Matsaev, “On the spectral theory of holomorphic operator-functions in Hilbert space,” Funct. Anal. Appl. 9, 73-74 (1975). · Zbl 0331.47008 · doi:10.1007/BF01078189
[16] R. Mennicken and A. K. Motovilov, “Operator interpretation of resonances arising in spectral problems for 2 × 2 operator matrices,” Math. Nachr. 201, 117-181 (1999). · Zbl 0932.47010 · doi:10.1002/mana.19992010107
[17] R. Mennicken and A. K. Motovilov, “Operator interpretation of resonances arising in spectral problems for 2 × 2 matrix Hamiltonians,” Oper. Theory: Adv. Appl. 108, 316-322 (1999). · Zbl 0967.81019
[18] R. Mennicken and A. A. Shkalikov, “Spectral decomposition of symmetric operator matrices,” Math. Nachr. 179, 259-273 (1996). · Zbl 0874.47009 · doi:10.1002/mana.19961790115
[19] A. K. Motovilov, “Removal of the resolvent-like energy dependence from interactions and invariant subspaces of a total Hamiltonian,” J. Math. Phys. 36, 6647-6664 (1995). · Zbl 0884.47056 · doi:10.1063/1.531178
[20] F. Philipp, V. Strauss, and C. Trunk, “Local spectral theory for normal operators in Krein spaces,” Math. Nach. 286, 42-58 (2013). · Zbl 1270.47034 · doi:10.1002/mana.201000141
[21] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators (Academic Press, New York, 1978). · Zbl 0401.47001
[22] C. Tretter, Spectral Theory of Block Operator Matrices and Applications (Imperial College Press, London, 2008). · Zbl 1173.47003 · doi:10.1142/p493
[23] C. Tretter, “Spectral inclusion for unbounded block operator matrices,” J. Funct. Anal. 256, 3806-3829 (2009). · Zbl 1179.47005 · doi:10.1016/j.jfa.2008.12.024
[24] K. Veselić, “On spectral properties of a class of J-selfadjoint operators. I,” GlasnikMat. 7, 229-248 (1972). · Zbl 0249.47027
[25] K. Veselić, “On spectral properties of a class of J-selfadjoint operators. II,” GlasnikMat. 7, 249-254 (1972). · Zbl 0249.47028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.