Jump to content

Axon terminal: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
further reading after references
m link
 
(14 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Short description|Nerve fiber part}}
[[File:Synapse diag1.svg|250px|thumb|An axon terminal (A) is transmitting a signal to neuron B (receiving). Features: ''1.'' [[Mitochondria|Mitochondrion]]. ''2.'' [[Synaptic vesicle]] filled with [[neurotransmitters|neurotransmitter]] molecules. ''3.'' Autoreceptor. ''4.'' [[Synapse|Synaptic cleft]] with neurotransmitter molecules. ''5.''Postsynaptic receptors activated by neurotransmitter (induction of a postsynaptic potential). '''6.''' [[Calcium channel]]. '''7.''' Exocytosis of a vesicle. '''8.''' Recaptured neurotransmitter.]]


[[File:Synapse diag1.svg|250px|thumb|An axon terminal (A) a signal to neuron B (receiving). Features: ''1.'' [[Mitochondria|Mitochondrion]]. ''2.'' [[Synaptic vesicle]] filled with [[neurotransmitters|neurotransmitter]] molecules. ''3.'' Autoreceptor. ''4.'' [[Synapse|Synaptic cleft]] with neurotransmitter molecules. ''5.''Postsynaptic receptors activated by (induction of a postsynaptic potential). '''6.''' [[Calcium channel]]. '''7.''' Exocytosis of a vesicle. '''8.''' Recaptured neurotransmitter.]]
'''Axon terminals''' (also called '''synaptic boutons, presynaptic terminals''', or '''end-feet''') are distal terminations of the branches of an [[axon]]. An axon, also called a nerve fiber, is a long, slender projection of a [[Neuron|nerve cell]] that conducts electrical impulses called [[action potential]]s away from the neuron's [[cell body]] in order to transmit those impulses to other neurons, muscle cells or glands. In the [[central nervous system]], most presynaptic terminals are actually formed along the axons ('''''en-passant'' boutons'''), not at their ends ('''terminal boutons''').


'''Axon terminals''' (also called ''' boutons, ''', '''end-feet''') are distal terminations of the branches of an [[axon]]. An axon, also called a nerve fiber, is a long, slender projection of a [[Neuron|nerve cell]] that conducts electrical impulses called [[action potential]]s away from the neuron's [[cell body]] to transmit those impulses to other neurons, muscle cells or glands. the central nervous system are formed along the axons (enpassant boutons), not at their ends (terminal boutons).
Functionally, the '''axon terminal''' converts an electrical signal into a chemical signal. When an action potential arrives at an '''axon terminal''' (A), [[neurotransmitter]] is released and diffuses across the synaptic cleft. If the postsynaptic cell (B) is also a [[neuron]], [[Neurotransmitter receptor|neurotransmitter receptors]] generate a small electrical current that changes the [[postsynaptic potential]]. If the postsynaptic cell (B) is a [[muscle cell]] ([[neuromuscular junction]]), it contracts.

Functionally, the axon terminal converts an electrical signal into a chemical signal. When an action potential arrives at an axon terminal (A), [[neurotransmitter]] is released and diffuses across the synaptic cleft. If the postsynaptic cell (B) is also a [[neuron]], [[Neurotransmitter receptor|neurotransmitter receptors]] generate a small electrical current that changes the [[postsynaptic potential]]. If the postsynaptic cell (B) is a [[muscle cell]] ([[neuromuscular junction]]), it contracts.


==Neurotransmitter release==
==Neurotransmitter release==
Axon terminals are specialized to release neurotransmitter very rapidly by [[exocytosis]].<ref>{{cite web |title=Axon Terminal |work=Medical Dictionary Online |url=http://www.online-medical-dictionary.org/definitions-a/axon-terminal.html |access-date=February 6, 2013 |archive-url=https://web.archive.org/web/20160304001903/http://www.online-medical-dictionary.org/definitions-a/axon-terminal.html |archive-date=2016-03-04 |url-status=dead }}</ref> Neurotransmitter molecules are packaged into [[synaptic vesicle]]s that cluster beneath the axon terminal membrane on the presynaptic side (A) of a synapse. Some of these vesicles are [[Synaptic vesicle|docked]], i.e. connected to the membrane by a number of specialized proteins, the [[SNARE (protein)|SNARE complex]]. The incoming [[action potential]] activates [[Voltage-gated calcium channel|voltage-gated calcium channels]], leading to an influx of calcium ions into the axon terminal. The [[SNARE (protein)|SNARE complex]] reacts to these calcium ions and forces the membrane of the vesicle to fuse with the [[Cell membrane|presynaptic membrane]], releasing their content into the synaptic cleft within 180 [[microsecond|µs]] of calcium entry.<ref name="Llinás81">{{cite journal | vauthors = Llinás R, Steinberg IZ, Walton K | title = Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse | journal = Biophysical Journal | volume = 33 | issue = 3 | pages = 323–351 | date = March 1981 | pmid = 6261850 | pmc = 1327434 | doi = 10.1016/S0006-3495(81)84899-0 | bibcode = 1981BpJ....33..323L }}</ref><ref name="Rizo 2018 pp. 1364–1391">{{cite journal | vauthors = Rizo J | title = Mechanism of neurotransmitter release coming into focus | journal = Protein Science | volume = 27 | issue = 8 | pages = 1364–1391 | date = August 2018 | pmid = 29893445 | pmc = 6153415 | doi = 10.1002/pro.3445 | type = Review | quote = Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. }}</ref><ref>{{cite journal | vauthors = Südhof TC, Rizo J | title = Synaptic vesicle exocytosis | journal = Cold Spring Harbor Perspectives in Biology | volume = 3 | issue = 12 | pages = a005637 | date = December 2011 | pmid = 22026965 | pmc = 3225952 | doi = 10.1101/cshperspect.a005637 }}</ref> When receptors in the postsynaptic membrane bind this neurotransmitter and open [[Ligand-gated ion channel|ion channels]], information has been transmitted between neuron (A) and neuron (B). To generate an [[action potential]] in the postsynaptic neuron, many [[Excitatory synapse|excitatory synapses]] must be active at the same time.
Axon terminals are specialized to release very rapidly by [[exocytosis]].<ref>{{ |title= |= |=---- |-= |-=-. |-= |-=}}</ref> Neurotransmitter molecules are packaged into [[synaptic vesicle]]s that cluster beneath the axon terminal membrane on the presynaptic side (A) of a synapse. Some of these vesicles are [[Synaptic vesicle|docked]], i.e. connected to the membrane by specialized proteins, the [[SNARE (protein)|SNARE complex]]. The incoming [[action potential]] activates [[Voltage-gated calcium channel|voltage-gated calcium channels]], leading to an influx of calcium ions into the axon terminal. The [[SNARE (protein)|SNARE complex]] reacts to these calcium ions forces the membrane to fuse with the [[Cell membrane|presynaptic membrane]], releasing their content into the synaptic cleft within 180 [[microsecond|]] of calcium entry.<ref name="Llinás81">{{cite journal | vauthors = Llinás R, Steinberg IZ, Walton K | title = Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse | journal = Biophysical Journal | volume = 33 | issue = 3 | pages = 323–351 | date = March 1981 | pmid = 6261850 | pmc = 1327434 | doi = 10.1016/S0006-3495(81)84899-0 | bibcode = 1981BpJ....33..323L }}</ref><ref name="Rizo 2018 pp. 1364–1391">{{cite journal | vauthors = Rizo J | title = Mechanism of neurotransmitter release coming into focus | journal = Protein Science | volume = 27 | issue = 8 | pages = 1364–1391 | date = August 2018 | pmid = 29893445 | pmc = 6153415 | doi = 10.1002/pro.3445 | type = Review | quote = Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. }}</ref><ref>{{cite journal | vauthors = Südhof TC, Rizo J | title = Synaptic vesicle exocytosis | journal = Cold Spring Harbor Perspectives in Biology | volume = 3 | issue = 12 | pages = a005637 | date = December 2011 | pmid = 22026965 | pmc = 3225952 | doi = 10.1101/cshperspect.a005637 }}</ref> When receptors in the postsynaptic membrane bind this neurotransmitter and open [[Ligand-gated ion channel|ion channels]], information transmitted between (A) and (B). To generate an [[action potential]] in the postsynaptic neuron, many [[Excitatory synapse|excitatory synapses]] must be active at the same time.


==Imaging the activity of axon terminals==
==Imaging the activity of axon terminals==
{{Neuron map}}
{{Neuron map}}


Historically, [[Calcium imaging|calcium-sensitive dyes]] were the first tool to quantify the calcium influx into synaptic terminals and to investigate the mechanisms of [[Synaptic plasticity|short-term plasticity]].<ref>{{cite journal | vauthors = Zucker RS, Regehr WG | title = Short-term synaptic plasticity | journal = Annual Review of Physiology | volume = 64 | issue = 1 | pages = 355–405 | date = 2002 | pmid = 11826273 | doi = 10.1146/annurev.physiol.64.092501.114547 }}</ref> The process of exocytosis can be visualized with pH-sensitive fluorescent proteins ([[Synapto-pHluorin]]): Before release, vesicles are acidic and the fluorescence is quenched. Upon release, they are neutralized, generating a brief flash of green fluorescence.<ref>{{cite journal | vauthors = Burrone J, Li Z, Murthy VN | title = Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin | journal = Nature Protocols | volume = 1 | issue = 6 | pages = 2970–2978 | date = 2006 | pmid = 17406557 | doi = 10.1038/nprot.2006.449 }}</ref> Another possibility is to construct a [[Optogenetic methods to record cellular activity|genetically encoded sensor]] that becomes fluorescent when bound to a specific neurotransmitter, e.g. [[Glutamic acid|glutamate]].<ref>{{cite journal | vauthors = Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan WB, Hires SA, Looger LL | display-authors = 6 | title = An optimized fluorescent probe for visualizing glutamate neurotransmission | journal = Nature Methods | volume = 10 | issue = 2 | pages = 162–170 | date = February 2013 | pmid = 23314171 | pmc = 4469972 | doi = 10.1038/nmeth.2333 }}</ref> This method is sensitive enough to detect the fusion of a single transmitter vesicle in brain tissue and to measure the release probability at individual synapses.<ref>{{cite journal | vauthors = Dürst CD, Wiegert JS, Schulze C, Helassa N, Török K, Oertner TG | title = Vesicular release probability sets the strength of individual Schaffer collateral synapses | journal = Nature Communications | volume = 13 | issue = 1 | pages = 6126 | date = October 2022 | pmid = 36253353 | pmc = 9576736 | doi = 10.1038/s41467-022-33565-6 }}</ref>
Historically, [[Calcium imaging|calcium-sensitive dyes]] were the first tool to quantify the calcium influx into synaptic terminals and to investigate the mechanisms of [[Synaptic plasticity|short-term plasticity]].<ref>{{cite journal | vauthors = Zucker RS, Regehr WG | title = Short-term synaptic plasticity | journal = Annual Review of Physiology | volume = 64 | issue = 1 | pages = 355–405 | date = 2002 | pmid = 11826273 | doi = 10.1146/annurev.physiol.64.092501.114547 }}</ref> The process of exocytosis can be visualized with pH-sensitive fluorescent proteins ([[Synapto-pHluorin]]): Before release, vesicles are acidic and the fluorescence is quenched. Upon release, they are neutralized, generating a brief flash of green fluorescence.<ref>{{cite journal | vauthors = Burrone J, Li Z, Murthy VN | title = Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin | journal = Nature Protocols | volume = 1 | issue = 6 | pages = 2970–2978 | date = 2006 | pmid = 17406557 | doi = 10.1038/nprot.2006.449 }}</ref> Another possibility is a [[Optogenetic methods to record cellular activity|genetically encoded sensor]] that becomes fluorescent when bound to a specific neurotransmitter, e.g. [[Glutamic acid|glutamate]].<ref>{{cite journal | vauthors = Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan WB, Hires SA, Looger LL | display-authors = 6 | title = An optimized fluorescent probe for visualizing glutamate neurotransmission | journal = Nature Methods | volume = 10 | issue = 2 | pages = 162–170 | date = February 2013 | pmid = 23314171 | pmc = 4469972 | doi = 10.1038/nmeth.2333 }}</ref> This method is sensitive enough to detect the fusion of a single transmitter vesicle in brain tissue and to measure the release probability at individual synapses.<ref>{{cite journal | vauthors = Dürst CD, Wiegert JS, Schulze C, Helassa N, Török K, Oertner TG | title = Vesicular release probability sets the strength of individual Schaffer collateral synapses | journal = Nature Communications | volume = 13 | issue = 1 | pages = 6126 | date = October 2022 | pmid = 36253353 | pmc = 9576736 | doi = 10.1038/s41467-022-33565-6 }}</ref>


== See also ==
== See also ==
*[[Calyx of Held]], a giant axon terminal in the [[auditory system]]
*[[Endocytosis]]
*[[Neuromuscular junction]], axon terminal contacting a muscle cell
*[[Vesicular monoamine transporter]]
*[[Endocytosis]] to recycle vesicles after use
*[[Vesicular monoamine transporter]]
*[[Optogenetic methods to record cellular activity|Optogenetic methods to measure cellular activity]]
*[[Optogenetic methods to record cellular activity|Optogenetic methods to measure cellular activity]]


Line 27: Line 31:
* {{cite journal | vauthors = Roffler-Tarlov S, Beart PM, O'Gorman S, Sidman RL | title = Neurochemical and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration | journal = Brain Research | volume = 168 | issue = 1 | pages = 75–95 | date = May 1979 | pmid = 455087 | doi = 10.1016/0006-8993(79)90129-X | s2cid = 19618884 }}
* {{cite journal | vauthors = Roffler-Tarlov S, Beart PM, O'Gorman S, Sidman RL | title = Neurochemical and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration | journal = Brain Research | volume = 168 | issue = 1 | pages = 75–95 | date = May 1979 | pmid = 455087 | doi = 10.1016/0006-8993(79)90129-X | s2cid = 19618884 }}
* {{cite journal | vauthors = Yagi T, Kaneko A | title = The axon terminal of goldfish retinal horizontal cells: a low membrane conductance measured in solitary preparations and its implication to the signal conduction from the soma | journal = Journal of Neurophysiology | volume = 59 | issue = 2 | pages = 482–494 | date = February 1988 | pmid = 3351572 | doi = 10.1152/jn.1988.59.2.482 }}
* {{cite journal | vauthors = Yagi T, Kaneko A | title = The axon terminal of goldfish retinal horizontal cells: a low membrane conductance measured in solitary preparations and its implication to the signal conduction from the soma | journal = Journal of Neurophysiology | volume = 59 | issue = 2 | pages = 482–494 | date = February 1988 | pmid = 3351572 | doi = 10.1152/jn.1988.59.2.482 }}
*LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite.<ref>{{cite journal | vauthors = Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D | title = LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite | journal = Nature | volume = 402 | issue = 6760 | pages = 421–425 | date = November 1999 | pmid = 10586883 | doi = 10.1038/46574 | s2cid = 205056308 | bibcode = 1999Natur.402..421T }}</ref>
*LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite.{{cite journal | vauthors = Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D | title = LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite | journal = Nature | volume = 402 | issue = 6760 | pages = 421–425 | date = November 1999 | pmid = 10586883 | doi = 10.1038/46574 | s2cid = 205056308 | bibcode = 1999Natur.402..421T }}
{{refend}}
{{refend}}



Latest revision as of 10:29, 21 September 2024

An axon terminal (A) transmits a signal to neuron B (receiving). Features: 1. Mitochondrion. 2. Synaptic vesicle filled with neurotransmitter molecules. 3. Autoreceptor. 4. Synaptic cleft with neurotransmitter molecules. 5. Postsynaptic receptors activated by neurotransmitters (induction of a postsynaptic potential). 6. Calcium channel. 7. Exocytosis of a vesicle. 8. Recaptured neurotransmitter.

Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those impulses to other neurons, muscle cells, or glands. Most presynaptic terminals in the central nervous system are formed along the axons (en passant boutons), not at their ends (terminal boutons).

Functionally, the axon terminal converts an electrical signal into a chemical signal. When an action potential arrives at an axon terminal (A), the neurotransmitter is released and diffuses across the synaptic cleft. If the postsynaptic cell (B) is also a neuron, neurotransmitter receptors generate a small electrical current that changes the postsynaptic potential. If the postsynaptic cell (B) is a muscle cell (neuromuscular junction), it contracts.

Neurotransmitter release

[edit]

Axon terminals are specialized to release neurotransmitters very rapidly by exocytosis.[1] Neurotransmitter molecules are packaged into synaptic vesicles that cluster beneath the axon terminal membrane on the presynaptic side (A) of a synapse. Some of these vesicles are docked, i.e., connected to the membrane by several specialized proteins, such as the SNARE complex. The incoming action potential activates voltage-gated calcium channels, leading to an influx of calcium ions into the axon terminal. The SNARE complex reacts to these calcium ions. It forces the vesicle's membrane to fuse with the presynaptic membrane, releasing their content into the synaptic cleft within 180 μs of calcium entry.[2][3][4] When receptors in the postsynaptic membrane bind this neurotransmitter and open ion channels, information is transmitted between neurons (A) and neurons (B).[5] To generate an action potential in the postsynaptic neuron, many excitatory synapses must be active at the same time.[1]

Imaging the activity of axon terminals

[edit]
Structure of a typical neuron

Historically, calcium-sensitive dyes were the first tool to quantify the calcium influx into synaptic terminals and to investigate the mechanisms of short-term plasticity.[6] The process of exocytosis can be visualized with pH-sensitive fluorescent proteins (Synapto-pHluorin): Before release, vesicles are acidic, and the fluorescence is quenched. Upon release, they are neutralized, generating a brief flash of green fluorescence.[7] Another possibility is constructing a genetically encoded sensor that becomes fluorescent when bound to a specific neurotransmitter, e.g., glutamate.[8] This method is sensitive enough to detect the fusion of a single transmitter vesicle in brain tissue and to measure the release probability at individual synapses.[9]

See also

[edit]

References

[edit]
  1. ^ a b Purves, Dale; Augustine, George J.; Fitzpatrick, David, eds. (2019). Neuroscience (6th ed.). New York: Sinauer Associates / Oxford University Press. ISBN 978-1-60535-841-3.
  2. ^ Llinás R, Steinberg IZ, Walton K (March 1981). "Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse". Biophysical Journal. 33 (3): 323–351. Bibcode:1981BpJ....33..323L. doi:10.1016/S0006-3495(81)84899-0. PMC 1327434. PMID 6261850.
  3. ^ Rizo J (August 2018). "Mechanism of neurotransmitter release coming into focus". Protein Science (Review). 27 (8): 1364–1391. doi:10.1002/pro.3445. PMC 6153415. PMID 29893445. Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery.
  4. ^ Südhof TC, Rizo J (December 2011). "Synaptic vesicle exocytosis". Cold Spring Harbor Perspectives in Biology. 3 (12): a005637. doi:10.1101/cshperspect.a005637. PMC 3225952. PMID 22026965.
  5. ^ Siegelbaum, Steven A. (2021). Kandel, Eric R.; Koester, John D.; Mack, Sarah H. (eds.). Principles of neural science (6th ed.). New York: McGraw-Hill. ISBN 978-1-259-64223-4.
  6. ^ Zucker RS, Regehr WG (2002). "Short-term synaptic plasticity". Annual Review of Physiology. 64 (1): 355–405. doi:10.1146/annurev.physiol.64.092501.114547. PMID 11826273.
  7. ^ Burrone J, Li Z, Murthy VN (2006). "Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin". Nature Protocols. 1 (6): 2970–2978. doi:10.1038/nprot.2006.449. PMID 17406557. S2CID 29102814.
  8. ^ Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, et al. (February 2013). "An optimized fluorescent probe for visualizing glutamate neurotransmission". Nature Methods. 10 (2): 162–170. doi:10.1038/nmeth.2333. PMC 4469972. PMID 23314171.
  9. ^ Dürst CD, Wiegert JS, Schulze C, Helassa N, Török K, Oertner TG (October 2022). "Vesicular release probability sets the strength of individual Schaffer collateral synapses". Nature Communications. 13 (1): 6126. doi:10.1038/s41467-022-33565-6. PMC 9576736. PMID 36253353.

Further reading

[edit]