Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;68(6 Pt 2):066303.
doi: 10.1103/PhysRevE.68.066303. Epub 2003 Dec 17.

Particle image velocimetry measurement of the velocity field in turbulent thermal convection

Affiliations

Particle image velocimetry measurement of the velocity field in turbulent thermal convection

Ke-Qing Xia et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec.

Abstract

The spatial structure of the velocity field in turbulent Rayleigh-Bénard convection in water has been measured using the particle image velocimetry technique, with the Rayleigh number Ra varying from 9 x 10(8) to 9 x 10(11) and the Prandtl number remaining approximately constant (Pr approximately 4). The study provides a direct confirmation that a rotatory mean wind indeed persists for the highest value of Ra reached in the experiment. The measurement reveals that the mean flow in the central region of the convection cell is of the shape of a coherent elliptical rotating core for Ra below 1 x 10(10). Above this Ra, the orientation of the elliptical core changes by a 90 degrees angle and an inner core rotating at a lower rate inside the original bulk core emerges. It is further found that the rotation frequencies of the inner core and the outer shell have distinct scalings with Ra; the scaling exponent for the outer-shell is 0.5 and it is 0.4 for the inner core. From the measured rms and skewness distributions of the velocity field, we find that velocity fluctuations at the cell center are neither homogeneous nor isotropic. The turbulent energy production fields further reveal that the mean wind is not driven by turbulent fluctuations associated with Reynolds stress.

PubMed Disclaimer

Similar articles

LinkOut - more resources